标签:区别 视频教程 逻辑回归 数据集 测试 如何使用 如何 作用 训练
在本章中将带领大家概要了解什么是机器学习、机器学习在当前有哪些典型应用、机器学习的核心思想、常用的框架有哪些,该如何进行选型等相关问题。
本章中,将介绍Spark的机器学习库,对比Spark当前两种机器学习库(MLLib/ML)的区别,同时介绍Spark机器学习库的应用场景以及行业应用优势。
本章中,将介绍如何进行实战环境搭建。包括如何完成Spark环境安装配置、如何通过Spark Shell进行编程,并通过 Wordcount 入门程序,完成部署和测试。
本章中,将对数据可视化进行介绍,告诉大家什么是数据可视化,我们通过数据可视化能对大数据系统起到怎样的作用,并结合 Echars 介绍了如何实现常见的数据可视化图表(折线图、柱状图、散点图)。
本章中,将讲解矩阵与向量的一些基本运算,并介绍Spark的矩阵与向量的操作,帮助数据基础薄弱的同学补齐短板。
本章中,将概要介绍Spark的基础统计模块、简单的统计学知识、相关系数以及假设检验的知识,拓展大家的技术视野。
本章中,将讲解几种常见的回归算法,并以预测房价模型为例,教大家如何使用回归算法来实现简单的预测。
本章中,将几种常见的分类算法,并结合鸢尾花数据集为例,讲解分类算法在Spark上的实践。同时,比较各种分类算法的区别,使大家能够合理选择应该使用的算法。
本章中,将介绍聚类算法,并通过比较聚类算法与分类算法的区别,帮助大家了解聚类算法的内在含义。此处,仍然使用鸢尾花数据集应用聚类算法进行分析,便于大家对比发现聚类算法与分类算法的区别与联系,以便于后期灵活运用。...
本章中,将通过讲解PCA算法的原理,使大家明白降维算法的大致原理,以及能够实现怎么样的功能。结合应用降维算法在分类算法使用之前进行预处理的实践,帮助大家体会算法的作用。
本章中,将结合前述知识进行综合实战,以达到所学即所用。文本情感分类这个项目会将分类算法、文本特征提取算法等进行关联,使大家能够对Spark的具体应用有一个整体的感知与了解。
本章中,将结合前述知识进行综合实战,以达到所学即所用。在推荐系统项目中,讲解了推荐系统基本原理以及实现推荐系统的架构思路,有其他相关研发经验基础的同学可以结合以往的经验,实现自己的推荐系统。
掌握Spark机器学习库 大数据开发技能更进一步【视频教程】
标签:区别 视频教程 逻辑回归 数据集 测试 如何使用 如何 作用 训练
原文地址:https://www.cnblogs.com/mycs/p/12168573.html