标签:倍增 假设 inf lin mat 求逆 amp display rac
对于给定 \(G(x)\) 求满足 \(G(F(x))\equiv 0\pmod{x^n}\) 的 \(F(x)\)。
假设当前已知 \(G(F_0(x))\equiv 0\pmod{x^{\lceil\frac{n}{2}\rceil}}\),将 \(G(F(x))\) 在 \(F_0(x)\) 处泰勒展开,则
\[ \begin{aligned} G(F(x))&=\sum_{i=0}^{+\infty}\frac{G^{(i)}(F_0(x))}{i!}(F(x)-F_0(x))^i\&\equiv G(F_0(x))+G'(F_0(x))(F(x)-F_0(x))\equiv 0&\pmod{&x^n} \F(x)&\equiv F_0(x)-\frac{G(F_0(x))}{G'(F_0(x))}&\pmod{&x^n} \end{aligned} \]
令
\[ H(F(x))=\frac{1}{F(x)}-G(x)\equiv 0\pmod{x^n} \]
则
\[ F(x)\equiv F_0(x)-\frac{\frac{1}{F_0(x)}-G(x)}{-\frac{1}{F_0(x)^2}}\equiv F_0(x)(2-G(x)F_0(x))\pmod{x^n} \]
令
\[ H(F(x))=F^2(x)-G(x)\equiv 0\pmod{x^n} \]
则
\[ F(x)\equiv F_0(x)-\frac{F_0(x)^2-G}{2F_0(x)}\equiv \frac{1}{2}(F_0(x)+\frac{G(x)}{F_0(x)})\pmod{x^n} \]
标签:倍增 假设 inf lin mat 求逆 amp display rac
原文地址:https://www.cnblogs.com/Ryedii-blog/p/12178764.html