码迷,mamicode.com
首页 > 其他好文 > 详细

图论中的一些名词的定义。

时间:2020-01-12 18:08:58      阅读:110      评论:0      收藏:0      [点我收藏+]

标签:定义   大小   存在   割边   连通   自己的   line   最小   一个   

最近zkx大佬在学图论,有一些定义很秀,压根读不懂,所以按照自己的理解来总结一下。

顶点集合

顶点集合:是原图中 的集合。

割点集合

割点集合:是个 顶点集合,在原 连通图 中删去 集合中的所有的点与集合中的点相连的边 后,原 连通图 不再连通。

点连通度

点连通度:最小割点集合 的大小(最小的割点集合中的点的个数)。

割边集合

割边集合:是个 的集合,在原 连通图 中删去 集合中所有的边 后,原 连通图 不再连通。

边连通度

边连通度:最小割边集合 的大小(最小的割边集合中边的个数)。

割点

割点:一个 ,使得在原 连通图 中删去该点后原 连通图 不再连通,很明显只有当该图的 点连通度\(1\) 时,该图才存在割点。

图论中的一些名词的定义。

标签:定义   大小   存在   割边   连通   自己的   line   最小   一个   

原文地址:https://www.cnblogs.com/poi-bolg-poi/p/12183166.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!