码迷,mamicode.com
首页 > 其他好文 > 详细

模型的度量

时间:2020-01-15 11:56:07      阅读:91      评论:0      收藏:0      [点我收藏+]

标签:alt   src   ade   mic   任务   泛化   参考   误差   mat   

参考《机器学习》,周志华,清华大学出版社

第二章

回归问题

回归任务常用的度量指标是:均方误差

\[ E(f;D)=\frac {1}{m}\sum^{m}_{i=1}(f(x_{i})-y_{i})^{2} \]

分类问题

分类任务中常用的性能度量指标是:错误率、精度

错误率:分类错误的样本数/样本总数

精度:分类正确的样本数/样本总数

预测结果
真实情况 正例 反例
正例 TP 真正例 FN 假反例
反例 FP 假正例 TN 真反例

查准率precision:

\[ P=\frac {TP}{TP+FP} \]

查全率recall:

\[ R=\frac {TP}{TP+FN} \]

P-R曲线

以查准率为横轴,以查全率为纵轴,得到查准率、查全率曲线,简称“P-R”曲线。
技术图片

平衡点

查全率 = 查准率

F1

\[ F1 = \frac {2\times P \times R } {P+R} \]

真正例率:

\[ TPR = \frac {TP}{TP+FN} \]

假正例率:

\[ FPR = \frac {FP} {TN+FP} \]

ROC曲线

研究学习器的泛化能力

横轴假正例率,纵轴真正例率,得到ROC曲线
技术图片

AUC

ROC曲线下的面积,称为AUC
技术图片

模型的度量

标签:alt   src   ade   mic   任务   泛化   参考   误差   mat   

原文地址:https://www.cnblogs.com/xuehuiping/p/12195616.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!