码迷,mamicode.com
首页 > 其他好文 > 详细

矩阵学习-基本矩阵分类

时间:2020-01-16 23:49:22      阅读:154      评论:0      收藏:0      [点我收藏+]

标签:inf   最大   sum   not   rmi   max   lin   spl   span   

矩阵分解

基本矩阵分类

  • 正交矩阵 : \(AA^T=A^TA=I\)
  • 正定矩阵 : 对于任何\(0\not=x\in R^n\), \(A^TxA>0\), \(A\)为正定矩阵
  • 对称矩阵 : \(A=A^T\)
  • 对称正定矩阵 :若满足\(A=A^T\),且对于任何\(0\not=x\in R^n\), \(A^TxA>0\)\(A\)为对称正定矩阵
  • Hermite矩阵 : 若满足\(A=A^T\),且对于任何\(0\not=x\in C^n\), \(A^TxA>0\)\(A\)为Hermite矩阵

范数定义

向量的范数可以简单形象的理解为向量的长度,或者向量到零点的距离,或者相应的两个点之间的距离。

向量\(x=(x_1,x_2,\cdots,x_n)\)的范数是一个函数\(||x||\),满足如下几个条件

  • \(||x||>=0\) 非负性
  • \(||cx||=|c||x|||\) 齐次性
  • \(||x+y||<=||x||+||y||\) 三角不等性

\[||x||_k=\left( \sum_{i=1}^{n}|x_i|^k\right)^{1/k}\]

常用范数

\(L1\)范数:\(||x||_1=\left(\sum_{i=1}^{n}|x_i|^1\right)^{1/1}=\sum_{i=1}^{n}|x_i|\) 即各项的绝对数之和

\(L2\)范数:\(||x||_2=\left(\sum_{i=1}^{n}|x_i|^2\right)^{1/2}\) 即各个元素平方和的开方

\(L\infty\)范数: \(||x||_{\infty}=\lim_{k\to\infty} \left( \sum_{i=1}^{n}|x_i|^k\right)^{1/k}=max(|x_i|)\) 为各个元素中绝对值最大值

矩阵学习-基本矩阵分类

标签:inf   最大   sum   not   rmi   max   lin   spl   span   

原文地址:https://www.cnblogs.com/langzou/p/12203749.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!