标签:har memset ring char s char ace min 多少 printf
标签:生成函数,多项式exp
有 $n$ 个点,每个点有一个度数 $v[i]$,代表如果选择这个点就必须满足这个点与 $v[i]$ 条边相连.
求:有多少种选法,使得所选集合中的点能构成一棵树.
如果 $m$ 个点能生成一颗树,那么一定满足 $\sum v_{i}=2\times (m-1)$
这是因为度数之和其实就是边的数量 $\times 2$.
~~然后感性理解~~:如果 $m$ 个点满足 $\sum v_{i}=2\times(m-1)$,则一定能构成一棵树.
那就将问题转化成:有 $m$ 个物品,每个物品的价值为 $v_{i}-2$,求装满一个体积为 $-2$ 的背包有多少种选法.
对于所有 $v_{i}-2>0$ 的部分,我们直接设生成函数+多项式 exp 来做,然后 $v_{i}=2$ 的部分直接乘上贡献.
最后 $v_{i}=1$ 的部分直接来一个二项式定理展开,然后依次枚举 $v_{i}=1$ 的个数就好了.
因为有 $ori-i=-2$,所以有 $ori=i-2$.
code:
#include <cmath> #include <cstring> #include <algorithm> #include <cstdio> #include <string> #define ll long long #define ull unsigned long long using namespace std; namespace IO { char buf[100000],*p1,*p2; #define nc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++) int rd() { int x=0; char s=nc(); while(s<‘0‘) s=nc(); while(s>=‘0‘) x=(((x<<2)+x)<<1)+s-‘0‘,s=nc(); return x; } void print(int x) {if(x>=10) print(x/10);putchar(x%10+‘0‘);} void setIO(string s) { string in=s+".in"; string out=s+".out"; freopen(in.c_str(),"r",stdin); // freopen(out.c_str(),"w",stdout); } }; const int G=3; const int N=4000005; const int mod=998244353; int A[N],B[N],w[2][N],mem[N*100],*ptr=mem,tmpa[N],tmpb[N],aa[N],bb[N]; inline int qpow(int x,int y) { int tmp=1; for(;y;y>>=1,x=(ll)x*x%mod) if(y&1) tmp=(ll)tmp*x%mod; return tmp; } inline int INV(int a) { return qpow(a,mod-2); } inline void ntt_init(int len) { int i,j,k,mid,x,y; w[1][0]=w[0][0]=1,x=qpow(3,(mod-1)/len),y=qpow(x,mod-2); for (i=1;i<len;++i) w[0][i]=(ll)w[0][i-1]*x%mod,w[1][i]=(ll)w[1][i-1]*y%mod; } void NTT(int *a,int len,int flag) { int i,j,k,mid,x,y; for(i=k=0;i<len;++i) { if(i>k) swap(a[i],a[k]); for(j=len>>1;(k^=j)<j;j>>=1); } for(mid=1;mid<len;mid<<=1) for(i=0;i<len;i+=mid<<1) for(j=0;j<mid;++j) { x=a[i+j], y=(ll)w[flag==-1][len/(mid<<1)*j]*a[i+j+mid]%mod; a[i+j]=(x+y)%mod; a[i+j+mid]=(x-y+mod)%mod; } if(flag==-1) { int rev=INV(len); for(i=0;i<len;++i) a[i]=(ll)a[i]*rev%mod; } } inline void getinv(int *a,int *b,int len,int la) { if(len==1) { b[0]=INV(a[0]); return; } getinv(a,b,len>>1,la); int l=len<<1,i; memset(A,0,l*sizeof(A[0])); memset(B,0,l*sizeof(A[0])); memcpy(A,a,min(la,len)*sizeof(a[0])); memcpy(B,b,len*sizeof(b[0])); ntt_init(l); NTT(A,l,1),NTT(B,l,1); for(i=0;i<l;++i) A[i]=((ll)2-(ll)A[i]*B[i]%mod+mod)*B[i]%mod; NTT(A,l,-1); memcpy(b,A,len<<2); } void get_dao(int *a,int *b,int len) { for(int i=1;i<len;++i) b[i-1]=(ll)i*a[i]%mod; b[len-1]=0; } void get_jifen(int *a,int *b,int len) { for(int i=1;i<len;++i) b[i]=(ll)INV(i)*a[i-1]%mod; b[0]=0; } void get_ln(int *a,int *b,int len,int la) { int l=len<<1,i; memset(tmpa,0,l<<2); memset(tmpb,0,l<<2); get_dao(a,tmpa,min(len,la)); getinv(a,tmpb,len,la); ntt_init(l); NTT(tmpa,l,1),NTT(tmpb,l,1); for(i=0;i<l;++i) tmpa[i]=(ll)tmpa[i]*tmpb[i]%mod; NTT(tmpa,l,-1); get_jifen(tmpa,b,len); } void get_exp(int *a,int *b,int len,int la) { if(len==1) { b[0]=1; return; } int l=len<<1,i; get_exp(a,b,len>>1,la); for(i=0;i<l;++i) aa[i]=bb[i]=0; for(i=0;i<(len>>1);++i) aa[i]=b[i]; get_ln(b,bb,len,len>>1); for(i=0;i<len;++i) bb[i]=(ll)(mod-bb[i]+(i>la?0:a[i]))%mod; bb[0]=(bb[0]+1)%mod; ntt_init(l); NTT(aa,l,1),NTT(bb,l,1); for(i=0;i<l;++i) aa[i]=(ll)aa[i]*bb[i]%mod; NTT(aa,l,-1); for(i=0;i<len;++i) b[i]=aa[i]; } struct poly { int len,*a; poly(){} poly(int l) {len=l,a=ptr,ptr+=l; } inline void rev() { reverse(a,a+len); } inline void fix(int l) {len=l,a=ptr,ptr+=l;} inline void get_mod(int l) { for(int i=l;i<len;++i) a[i]=0; len=l; } inline poly dao() { poly re(len-1); for(int i=1;i<len;++i) re.a[i-1]=(ll)i*a[i]%mod; return re; } inline poly jifen() { poly c; c.fix(len+1); c.a[0]=0; for(int i=1;i<=len;++i) c.a[i]=(ll)a[i-1]*INV(i)%mod; return c; } inline poly Inv(int l) { int lim=1; while(lim<=l) lim<<=1; poly b(lim); getinv(a,b.a,lim,len); return b; } inline poly ln(int l) { int lim=1; while(lim<=l) lim<<=1; poly b(lim); get_ln(a,b.a,lim,len); return b; } inline poly exp(int l) { int lim=1; while(lim<=l) lim<<=1; poly b(lim); get_exp(a,b.a,lim,len); b.get_mod(l); return b; } inline poly operator*(const poly &b) const { poly c(len+b.len-1); if(c.len<=500) { for(int i=0;i<len;++i) if(a[i]) for(int j=0;j<b.len;++j) c.a[i+j]=(c.a[i+j]+(ll)(a[i])*b.a[j])%mod; return c; } int n=1; while(n<(len+b.len)) n<<=1; memset(A,0,n<<2); memset(B,0,n<<2); memcpy(A,a,len<<2); memcpy(B,b.a,b.len<<2); ntt_init(n); NTT(A,n,1), NTT(B,n,1); for(int i=0;i<n;++i) A[i]=(ll)A[i]*B[i]%mod; NTT(A,n,-1); memcpy(c.a,A,c.len<<2); return c; } poly operator+(const poly &b) const { poly c(max(len,b.len)); for(int i=0;i<c.len;++i) c.a[i]=((i<len?a[i]:0)+(i<b.len?b.a[i]:0))%mod; return c; } poly operator-(const poly &b) const { poly c(len); for(int i=0;i<len;++i) { if(i>=b.len) c.a[i]=a[i]; else c.a[i]=(a[i]-b.a[i]+mod)%mod; } return c; } poly operator/(poly u) { int n=len,m=u.len,l=1; while(l<(n-m+1)) l<<=1; rev(),u.rev(); poly v=u.Inv(l); v.get_mod(n-m+1); poly re=(*this)*v; rev(),u.rev(); re.get_mod(n-m+1); re.rev(); return re; } poly operator%(poly u) { poly re=(*this)-u*(*this/u); re.get_mod(u.len-1); return re; } }po; int a[N],v[N],bu[N],fac[N],inv[N],f0,f1,IN[N]; int C(int x,int y) { if(x<y) return 0; return (ll)fac[x]*IN[y]%mod*IN[x-y]%mod; } int main() { // IO::setIO("input"); int i,j,n; scanf("%d",&n); for(i=1;i<=n;++i) { scanf("%d",&v[i]); if(v[i]>2) bu[v[i]-2]++; else if(v[i]==2) ++f0; else ++f1; } // int maxm=n; fac[0]=IN[0]=inv[0]=1; for(i=1;i<=n;++i) { fac[i]=(ll)fac[i-1]*i%mod; inv[i]=INV(i); IN[i]=INV(fac[i]); } po.fix(n+1); for(i=1;i<=n;++i) { if(bu[i]) { for(j=i;j<=n;j+=i) { int d=j/i; int de=((d+1)%2==0)?1:mod-1; po.a[j]=(ll)(po.a[j]+(ll)de*bu[i]%mod*inv[d]%mod+mod)%mod; } } } po=po.exp(n+1); int tmp=qpow(2,f0); for(i=0;i<=n;++i) po.a[i]=(ll)po.a[i]*tmp%mod; // int ans=(ll)C(f1,2)*tmp; int ans=0; for(i=2;i<=f1;++i) { ans=(ll)(ans+(ll)C(f1,i)*po.a[i-2]%mod)%mod; } printf("%d\n",ans); return 0; }
luoguP5860 「SWTR-03」Counting Trees 生成函数+多项式exp
标签:har memset ring char s char ace min 多少 printf
原文地址:https://www.cnblogs.com/guangheli/p/12209231.html