码迷,mamicode.com
首页 > 其他好文 > 详细

NumPy统计函数

时间:2020-01-21 00:29:36      阅读:142      评论:0      收藏:0      [点我收藏+]

标签:tail   数组元素   sqrt   pre   算数   求和   中位数   平方根   proc   

numpy.amin()和numpy.amax()
numpy.amin()用于计算数组中元素沿着指定轴的最小值。
numpy.amax()用于计算数组中元素沿着指定轴的最大值

a=np.array([1,3,6],[3,4,11],[6,1,4])
print(np.amin(a,1) #每行最小值
print(np.amin(a,0) #每列最小值
print(np.amax(a)   #所有元素中最大值
print(np.amax(a,1)) #j每行的最大值

结果:

[1 3 1]
[1 1 4]
11
[ 6 11  6]

** numpy.ptp()
用来计算数组中元素的最大值与最小值的差(最大值-最小值)。
numpy.percentile()**
表示百分比
numpy.percentile(a,q,axis)

  • a:输入数组
  • q:要计算的百分位数
  • axis:沿着它计算百分位数的轴
    对于一个数组,我们设置它的百分位数为20,则我们可以推算出在该数组排序中在百分之20上的值是多少,例如:
# percentail百分数
a = np.array([[21, 60, 4], [10, 20, 1]])
print('数组a:')
print(a)

print('调用 percentile() 函数:')
# 50% 的分位数,就是 a 里排序之后的中位数
print(np.percentile(a, 20))
# axis 为 0,在纵列上求
print(np.percentile(a, 20, axis=0))
# axis 为 1,在横行上求
print(np.percentile(a, 20, axis=1))
# 保持维度不变
print(np.percentile(a, 20, axis=1, keepdims=True))

结果:

数组a:
[[21 60  4]
 [10 20  1]]
调用 percentile() 函数:
4.0
[12.2 28.   1.6]
[10.8  4.6]
[[10.8]
 [ 4.6]]

Process finished with exit code 0

标准差
std=sqrt(mean((x-x.mean()) * * 2)
其中mean((x-x.mean()) * * 2)是指每个样本与全体样本值的平均数之差,即方差,标准差就是方差的平方根。

其它统计函数

numpy.mediam()

用于计算数组a中元素的中位数

numpy.average()

将各数值乘以相应的权数,然后加总求和得到总体值,再除以总的单位数。即用来计算加权平均数

numpy.mean()

返回数组元素的算术平均值

NumPy统计函数

标签:tail   数组元素   sqrt   pre   算数   求和   中位数   平方根   proc   

原文地址:https://www.cnblogs.com/supershuai/p/12219869.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!