标签:lct main getc mat make namespace def pre OLE
这个题和\(P3203\\)弹飞绵羊基本上完全一致
我的做法是用\(LCT\)维护信息,开一个节点\(fly\),表示到此节点时,小球会弹飞,那么查询弹多少次即为\(siz[fly]-1\)
最后一次落在哪个洞可以用维护链上最大值来解决
一些小细节看代码就行了
\(code:\)
#include<bits/stdc++.h>
#define maxn 400010
using namespace std;
template<typename T> inline void read(T &x)
{
x=0;char c=getchar();bool flag=false;
while(!isdigit(c)){if(c=='-')flag=true;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
if(flag)x=-x;
}
int n,m,flag,root,tot,fly;
int p[maxn],fa[maxn],ch[maxn][2],siz[maxn],ma[maxn],rev[maxn];
bool check(int x)
{
return ch[fa[x]][1]==x;
}
void pushr(int x)
{
rev[x]^=1;swap(ch[x][0],ch[x][1]);
}
void pushup(int x)
{
siz[x]=siz[ch[x][0]]+siz[ch[x][1]]+1;
if(x!=fly) ma[x]=max(x,max(ma[ch[x][0]],ma[ch[x][1]]));
else ma[x]=max(ma[ch[x][0]],ma[ch[x][1]]);
}
void pushdown(int x)
{
if(!rev[x]) return;
pushr(ch[x][0]),pushr(ch[x][1]);
rev[x]=0;
}
bool notroot(int x)
{
return ch[fa[x]][0]==x||ch[fa[x]][1]==x;
}
void rotate(int x)
{
int y=fa[x],z=fa[y],k=check(x),w=ch[x][k^1];
if(notroot(y)) ch[z][check(y)]=x;
fa[x]=z;
ch[y][k]=w;
if(w) fa[w]=y;
ch[x][k^1]=y;
fa[y]=x;
pushup(y);
}
void all(int x)
{
if(notroot(x)) all(fa[x]);
pushdown(x);
}
void splay(int x)
{
all(x);
for(int y;notroot(x);rotate(x))
if(notroot(y=fa[x]))
rotate(check(x)^check(y)?x:y);
pushup(x);
}
void access(int x)
{
for(int y=0;x;y=x,x=fa[x])
splay(x),ch[x][1]=y;
}
void makeroot(int x)
{
access(x),splay(x),pushr(x);
}
void split(int x,int y)
{
makeroot(x),access(y),splay(y);
}
void link(int x,int y)
{
split(x,y),fa[x]=y;
}
void cut(int x,int y)
{
split(x,y),fa[x]=ch[y][0]=0;
}
int main()
{
read(n),read(m);
fly=n+1;
for(int i=1;i<=n;++i)
{
read(p[i]);
if(i+p[i]<=n) link(i,i+p[i]);
else link(i,fly);
}
while(m--)
{
int x,y;
read(flag);
if(flag)
{
read(x);
split(x,fly);
printf("%d %d\n",ma[fly],siz[fly]-1);
}
else
{
read(x),read(y);
if(x+p[x]<=n) cut(x,x+p[x]);
else cut(x,fly);
p[x]=y;
if(x+p[x]<=n) link(x,x+p[x]);
else link(x,fly);
}
}
return 0;
}
标签:lct main getc mat make namespace def pre OLE
原文地址:https://www.cnblogs.com/lhm-/p/12229813.html