码迷,mamicode.com
首页 > 其他好文 > 详细

查找表

时间:2020-01-23 18:11:16      阅读:127      评论:0      收藏:0      [点我收藏+]

标签:算法   相等   开始   bin   while   优点   null   turn   nbsp   

基本概念:

查找表:由同一类型的数据元素(或记录)构成的集合。

关键字(键):用来表示数据元素的数据项成为关键字,简称键,其值称为键值

主关键字:可唯一标识哥哥数据元素的关键字

查找:根据给定的某个K值,再查找表寻找一个其键值等于K的数据元素。

静态查找表:进行的是引用型运算

动态查找表:进行的是加工型运算

 

静态查找表:

查找表用顺序表表示:(见P163
const int maxsize=20 //静态查找表的表长
typedef struct {
TableElem elem[maxsize+1]/*一维数组, 0号单元留空*/
int n/*最后一个元素的下标,也即表长*/
}SqTable ;

typedef struct {
keytype key ; /*关键字域 */
/*其它域*/
} TableElem ;

一、过程
从表中最后一个记录开始顺序进行查找,若当前记录的
关键字=给定值,则查找成功;否则,继续查上一记录
若直至第一个记录尚未找到需要的记录,则查找失败

二、算法
方法一: 使用一种设计技巧:设立岗哨
int SearchSqtable(Sqtable T, KeyType key
{ /*在顺序表R中顺序查找其关键字等于key的元素。
若找到,则函数值为该元素在表中的位置,否则为0*/
T.elem[0].key=key;
i=T.n;
while ( T.elem[i].key!=key ) i- - ;
return i ;
}

三、算法分析
成功查找: ASL=∑ni=1Pi Ci(设每个记录的查找概率相等)
=1/n ∑ni=1n-i+1
=n+1)/2
不成功查找: ASL=n+1
▲顺序查找优点:简单,对表无要求;
▲顺序查找缺点:比较次数多


1、二分查找思想:
每次找中项
.中项是,则找到;
.否则,根据此中项的关键字与给
定关键字的关系,决定在表的前
或后半部继续找。
关键点。可使下次查找范围缩小一半。
二分查找基本思想: 每次将处于查找区间中间位置
上的数据元素与给定值K比较,若不等则缩小查找区间并
在新的区间内重复上述过程,直到查找成功或查找区间长
度为0(查找不成功)为止

二分查找算法:

int SearchBin ( SqTable T, KeyType key ) {
/*在有序表R中二分查找其关键字等于K的数据元素;若找到,
则返回该元素在表中的位置, 否则返回0 */
int low,high;
low=1 ; high=T.n ;
while ( low<=high )
{ mid=(low+high)/2 ;
if (key==T.elem[mid].key) return mid;
else if (keyT.elem[mid].key ) high =mid-1 ;
else low=mid+1 ;
}
return (0) ;
}
分块查找

一、查找过程:
1.先建立最大(或小)关键字表——索引表(有序)
即将每块中最大(或最小)关键字及指示块首记
录在表中位置的指针依次存入一张表中,此表称为索
引表;
2.查找索引表,以确定所查元素所在块号;
将查找关键字k与索引表中每一元素(即各块中最
大关键字)进行比较,以确定所查元素所在块号;
3.在相应块中按顺序查找关键字为k的记录

算法分析:

静态查找表的上述三种不同实现各有优缺点。其中,
顺序查找效率最低但限制最少。
二分查找效率最高,但限制最强。
而分块查找则介于上述二者之间。在实际应用中应根据需要加以选择。

 

算法分析:

静态查找表的上述三种不同实现各有优缺点。其中:

顺序查找效率低但限制最少

二分查找效率最高,但限制最强

而分块查找则介于上述两者之间,再实际应用中应根据需要加以选择。

一、二叉排序树
●什么是二叉排序树?
一棵二叉排序树(Binary Sort Tree)(又称二叉查找树)或者是一棵空二叉树,或者
是具有下列性质的二叉树:
① 若它的左子树不空,则左子树上所有结点的键值均小于它的根结点键值;
② 若它的右子树不空,则右子树上所有结点的键值均大于它的根结点键值;
③ 根的左、右子树也分别为二叉排序树。
●性质:
中序遍历一棵二叉排序树所得的结点访问序列是键值的递增序列。

二、二叉排序树上的查找:
1、过程:
当二叉排序树不空时,首先将给定值和根结点的关键字
比较,若相等,则查找成功;否则根据给定值与根结点关键字
间的大小关系,分别在左子树或右子树上继续进行查找。

(1)二叉排序树,对每个结点,均有:
左子树上的所有结点键值都比根的小;
右子树上的所有结点键值都比根的大。
(2)构造二叉排序树的同时也对序列排序了。

BinTree SearchBST(BinTree bst ,KeyType key)
/*在根指针bst所指的二叉排序树上递归地查找键值等于key的结点。若成功,则返回指
向该结点的指针,否则返回空指针*/

{ if (bst==NULL) return NULL; //不成功时返回 NULL 作为标记
else if (key==bst->key) return bst; //成功时返回结点地址


else if ( key<bst->key)
return SearchBST (bst->lchild, key); //继续在左子树中查找
else
return SearchBST (bst->rchild, key); //继续在右子树中查找
}
由上面的查找过程可知:在二叉排序树上进行查找, 若查找成功,则是从根结点出发走
了一条从根结点到待查结点的路径;若查找不成功,则是从根结点出发走了一条从根到
某个叶子的路径。因此与二分查找类似,关键字比较的次数不超过二叉树的深度

二叉排序树的插入和生成
对序列R={k1k2kn}k1kn均为关键字值,则
按下列原则可构造二叉排序树:
(1)k1为根;
(2)k1k2 ,则令k2k1的右孩,否则为左孩;
(3) k3k4kn递归重复(2

技术图片

 

 ◆散列函数哈希函数——设记录表A,长为nai
1≤i≤n)为表中某一元素, ki为其关键字,则关键
ki和元素ai在表中的地址之间有一函数关系,即:
Addrai= Hki

◆散列地址——由散列函数决定数据元素的存储位置,该位置
称为散列地址。

 

冲突:

k1≠ k2 但 H(k1) =H(k2)的现象称为冲突
即:不同的关键字映射到同一存储单元。
并称k1和k2同义词


常用散列

1、数字分析法

2、除留余数法

3.平方取中法

4.基数转换法

查找表

标签:算法   相等   开始   bin   while   优点   null   turn   nbsp   

原文地址:https://www.cnblogs.com/X404/p/12230838.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!