标签:NPU one ora where ber war ota htm www
Reverse bits of a given 32 bits unsigned integer.
Example 1:
Input: 00000010100101000001111010011100
Output: 00111001011110000010100101000000
Explanation: The input binary string 00000010100101000001111010011100 represents the unsigned integer 43261596, so return 964176192 which its binary representation is 00111001011110000010100101000000.
Example 2:
Input: 11111111111111111111111111111101
Output: 10111111111111111111111111111111
Explanation: The input binary string 11111111111111111111111111111101 represents the unsigned integer 4294967293, so return 3221225471 which its binary representation is 10111111111111111111111111111111.
Note:
-3
and the output represents the signed integer -1073741825
.
Follow up:
If this function is called many times, how would you optimize it?
Problem link
You can find the detailed video tutorial here
Use this problem to bring awareness of bit manipulation in interviews, it‘s rare but sometimes do get asked by some interviewers.
We can directly use Java‘s Integer.reverse() method, not suitable for interview purpose.
Simple simulation, reading bits from the right most and adding them up while shifting left.
Regarding the follow up, caching is an obvious solution. There are two ways to cache
If you are curious on how Java SDK implemented this method, it uses the algorithm in Hackers Delight book section 7-1
1195 /** 1196 * Returns the value obtained by reversing the order of the bits in the 1197 * two‘s complement binary representation of the specified {@code int} 1198 * value. 1199 * 1200 * @return the value obtained by reversing order of the bits in the 1201 * specified {@code int} value. 1202 * @since 1.5 1203 */ 1204 public static int reverse(int i) { 1205 // HD, Figure 7-1 1206 i = (i & 0x55555555) << 1 | (i >>> 1) & 0x55555555; 1207 i = (i & 0x33333333) << 2 | (i >>> 2) & 0x33333333; 1208 i = (i & 0x0f0f0f0f) << 4 | (i >>> 4) & 0x0f0f0f0f; 1209 i = (i << 24) | ((i & 0xff00) << 8) | 1210 ((i >>> 8) & 0xff00) | (i >>> 24); 1211 return i; 1212 }
1 public int reverseBits(int n) { 2 int res = 0; 3 4 for (int i = 0; i < 32; i++) { 5 int t = n & 1; 6 n = n >> 1; 7 res = res << 1; 8 res = res | t; 9 10 } 11 return res; 12 // return Integer.reverse(n); 13 } 14 15 public int reverseBitsWithCache(int n) { 16 byte[] bytes = new byte[4]; 17 Map<Byte, Integer> lookup = new HashMap<>(); 18 19 int reversedResult = 0; 20 21 for (int i = 0; i < 4; i++) { 22 bytes[i] = (byte)((n >> (8 * i)) & 0xFF); 23 reversedResult = reversedResult << 8; 24 reversedResult = reversedResult | this.reverseByte(bytes[i], lookup); 25 } 26 27 return reversedResult; 28 } 29 30 public int reverseByte(byte a, Map<Byte, Integer> lookup) { 31 // TODO: validate input 32 if (lookup.containsKey(a)) { 33 return lookup.get(a); 34 } 35 36 int reversedByte = 0; 37 for (int i = 0; i < 8; i++) { 38 int t = (a >> i) & 1; 39 reversedByte = reversedByte << 1; 40 reversedByte = reversedByte | t; 41 } 42 43 lookup.put(a, reversedByte); 44 45 return reversedByte; 46 }
Time Complexity: O(N), where N is number of bits in the input integer
Space Complexity: O(1), no extra space needed
Leetcode solution 190: Reverse Bits
标签:NPU one ora where ber war ota htm www
原文地址:https://www.cnblogs.com/baozitraining/p/12233711.html