码迷,mamicode.com
首页 > 其他好文 > 详细

GridMask:一种数据增强方法

时间:2020-01-28 23:03:17      阅读:357      评论:0      收藏:0      [点我收藏+]

标签:方法   excel   ati   没有   git   总结   计算方法   对比   ppi   

GridMask Data Augmentation, ARXIV 2020

代码地址:https://github.com/akuxcw/GridMask

这篇论文提出了一种简单的数据增强方法,在图像分类、检测、分割三个任务进行实验,效果提升明显。

1. Introduction

作者首先回顾了数据增强(Data augmentation)方法,指出当前方法有三类:spatial transformation, color distortion, 以及 information dropping。本文提出的方法属于 information dropping,作者指出,对于此类方法,避免过度删除或保持连续区域是核心问题:一方面,过度删除区域将造成完整目标被删除或者上下文信息缺失,因此,剩下的区域不足以表达目标信息,会成为noisy data。另一方面,保留过多区域,将会使得目标不受影响(untouched),会影响网络的鲁棒性。

作者重点介绍了 Cutout 和 HaS 方法。Cutout方法只删除图像中的一块连续区域,因此,容易出现删除掉整个目标,或者一点目标也没有删除的情况;HaS方法把图像划分为若干小块的区域,然后随机删除,但仍然会出现和 Cutout 相同的问题。下图展示了 GridMask 方法与当前方法的对比。

技术图片

2. Methodology

GridMask 通过生成一个和原图相同分辨率的mask,然后将该mask与原图相乘得到一个图像。下图中灰色区域的值为1,黑色区域的值为0。这样,就实现了特定区域的 information dropping,本质上可以理解为一种正则化方法。

技术图片

GridMask对应4个参数,为 \((x,y,r,d)\) ,四个参数的设置如下图所示:

技术图片

从图中可以看出,\(r\) 代表了保留原图像信息的比例,有一个计算方法,具体可以阅读论文。\(d\) 决定了一个dropped square的大小, 参数 \(x\)\(y\)的取值有一定随机性,细节可以阅读论文。

3. 实验分析

在ImageNet-1K图像分类任务上,Cutout对ResNet50的提升为0.6%,HaS的提升为0.7%,AutoAugement提升为1.1%,相比而言,GridMask的提升为1.4%。作者还在CIFAR10数据集上进行了实验,这里不再详述。

在Ablation Study中,作者首先分析了参数\(r\)。如下图所示,在ImageNet-1K数据集上,设置为0.6比较好;在CIFAR10数据集上,设置为0.4比较好。作者解释为,在复杂的数据集上应该保持更多的信息来避免under-fitting,在简单数据集上应该丢弃更多的信息来减少over-fitting。这和 common sense 是一致的。

技术图片

作者还在目标检测、语义分割任务上进行了实验,具体可阅读论文,不再详述。此外,作者还把方法和 Mixup方法进行了结合,结果表明性能同样可以得到提升。

4. 总结与讨论

GridMask是简单、通用性强并且有效的数据增强工具,同时,作者相信未来可以构造more excellent structures 来进一步改进性能。

GridMask:一种数据增强方法

标签:方法   excel   ati   没有   git   总结   计算方法   对比   ppi   

原文地址:https://www.cnblogs.com/gaopursuit/p/12239072.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!