标签:class span clu etc lib using algo += iostream
\[a^k\]
把k转成2进制
\[k=2^n*p[n]+2^(n-1)*p[n-1]+...+2^1*p[1]+2^0*p[0]\]
\[a^k=a^(2^n*p[n]+2^(n-1)*p[n-1]+...+2^1*p[1]+2^0+p[0])\]
\[a^k=a^(2^0*p[0])*a^(2^1*p[1])*a^(2^2*p[2])*...*a^(2^n*p[n])\]
\[a^k=a^2^0^p[0]*a^2^1^p[1]*a^2^2^p[2]*...*a^2^n^p[n]\]
p[0...n]不是一就是零
一开始a=a,若p[0]=1,ans就乘a
接着循环,a=a^2,若p[1]=1,ans就乘a^2
以此类推
直到第n项
int a;
int ans = 1;
while(k)
{
if(k % 2 == 1) ans *=a;
k /= 2;
a *= a;
}
裸快速幂
#include <cmath>
#include <cstdio>
#include <string>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
using namespace std;
int a, n, m, x, k;
long long mi;
int QR()
{
char c;
int sign = 1;
c = getchar();
while (c < '0' ||c > '9'){
if(c == '-')
sign = -1;
c = getchar();
}
int res = 0;
while(c <= '9' &&c >= '0'){
res *= 10;
res += c - '0';
c = getchar();
}
res *= sign;
return res;
}
int main()
{
n=QR();
m=QR();
k=QR();
x=QR();
a = 10;
mi = 1;
while(k)
{
if(k % 2 == 1) mi *=a;
k /= 2;
a *= a;
a %= n;
mi %= n; //必须随时取模,不然超ll
}
mi *= m;
mi += x;
mi %= n;
printf("%lld",mi);
return 0;
}
标签:class span clu etc lib using algo += iostream
原文地址:https://www.cnblogs.com/ZhengkunJia/p/12242890.html