码迷,mamicode.com
首页 > 其他好文 > 详细

PP: Toeplitz Inverse Covariance-Based Clustering of Multivariate Time Series Data

时间:2020-01-31 10:28:33      阅读:101      评论:0      收藏:0      [点我收藏+]

标签:clust   you   from   nbsp   seq   dataset   key   inverse   res   

From: Stanford University; Jure Leskovec, citation 6w+; 

Problem:

subsequence clustering.

Challenging:

discover patterns is challenging because it requires simultaneous segmentation and clustering of the time series + interpreting the cluster results is difficult. 

Why discover time series patterns is a challenge?? thinking by yourself!! there are already so many distance measures(DTW, manifold distance) and clustering methods(knn,k-means etc.). But I admit the interpretation is difficult.

Introduction:

long time series ----breakdown-----> a sequence of states/patterns ------> so time series can be expressed as a sequential timeline of a few key states. -------> discover repeated patterns/ understand trends/ detect anomalies/ better interpret large and high-dimensional datasets. 

Key steps: simultaneously segment and cluster the time series.

Unsupervised learning: hard to interpretation, after clustering, you have to view data itself.

how to discover interpretable structure in the data?

distance-based metrics, DTW.

 

Reference: 

1. 如何用简单易懂的例子解释条件随机场(CRF)模型?

 

PP: Toeplitz Inverse Covariance-Based Clustering of Multivariate Time Series Data

标签:clust   you   from   nbsp   seq   dataset   key   inverse   res   

原文地址:https://www.cnblogs.com/dulun/p/12244506.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!