标签:sklearn amp 就是 code array 参数 mode res 测试
sklearn.model_selection.train_test_split随机划分训练集和测试集
train_test_split是交叉验证中常用的函数,功能是从样本中随机的按比例选取train data和testdata,形式为:
X_train,X_test, y_train, y_test =train_test_split(train_data,train_target,test_size=0.4, random_state=0)
train_data:所要划分的样本特征集
train_target:所要划分的样本结果
test_size:样本占比,如果是整数的话就是样本的数量
random_state:是随机数的种子。
随机数种子:其实就是该组随机数的编号,在需要重复试验的时候,保证得到一组一样的随机数。比如你每次都填1,其他参数一样的情况下你得到的随机数组是一样的。不填的话默认值为False,即每次切分的比例虽然相同,但是切分的结果不同。
随机数的产生取决于种子,随机数和种子之间的关系遵从以下两个规则:
种子不同,产生不同的随机数;种子相同,即使实例不同也产生相同的随机数。
Examples -------- >>> import numpy as np >>> from sklearn.model_selection import train_test_split >>> X, y = np.arange(10).reshape((5, 2)), range(5) >>> X array([[0, 1], [2, 3], [4, 5], [6, 7], [8, 9]]) >>> list(y) [0, 1, 2, 3, 4] >>> X_train, X_test, y_train, y_test = train_test_split( ... X, y, test_size=0.33, random_state=42) ... >>> X_train array([[4, 5], [0, 1], [6, 7]]) >>> y_train [2, 0, 3] >>> X_test array([[2, 3], [8, 9]]) >>> y_test [1, 4] X_train,y_train:得到的训练数据。 X_test, y_test:得到的测试数据。 X,y:原始数据
标签:sklearn amp 就是 code array 参数 mode res 测试
原文地址:https://www.cnblogs.com/SupremeBoy/p/12247864.html