码迷,mamicode.com
首页 > 其他好文 > 详细

图像灰度变换、二值化、直方图

时间:2020-02-01 14:45:49      阅读:113      评论:0      收藏:0      [点我收藏+]

标签:比较运算符   图像处理   html   注意   open   数据   new   尊重   count   

1、灰度变换

1)灰度图的线性变换

Gnew = Fa * Gold + Fb。

Fa为斜线的斜率,Fb为y轴上的截距。

Fa>1 输出图像的对比度变大,否则变小。

Fa=1 Fb≠0时,图像的灰度上移或下移,效果为图像变亮或变暗。

Fa=-1,Fb=255时,发生图像反转。

注意:线性变换会出现亮度饱和而丢失细节。

2)对数变换

t=c * log(1+s)

c为变换尺度,s为源灰度,t为变换后的灰度。

对数变换自变量低时曲线斜率高,自变量大时斜率小。所以会放大图像较暗的部分,压缩较亮的部分。

3)伽马变换

y=(x+esp)γ,x与y的范围是[0,1], esp为补偿系数,γ为伽马系数。

当伽马系数大于1时,图像高灰度区域得到增强。

当伽马系数小于1时,图像低灰度区域得到增强。

当伽马系数等于1时,图像线性变换。

技术图片

4)图像取反
方法1:直接取反
imgPath = E:\opencv_pic\src_pic\pic2.bmp;
img1 = imread(imgPath); % 前景图
img0 = 255-img1; % 取反景图
subplot(1,2,1),imshow(img1),title(原始图像);
subplot(1,2,2),imshow(img0),title(取反图像);

技术图片

方法2:伽马变换

Matlab:imadjust(f, [low_in, high_in], [low_out, high_out], gamma)

[low_in, high_in]范围内的数据映射到 [low_out, high_out],低于low的映射到low_out, 高于high的映射到high_out.

imgPath = E:\opencv_pic\src_pic\pic2.bmp;
img1 = imread(imgPath); % 前景图
img0 = imadjust(img1, [0,1], [1,0]);
subplot(1,2,1),imshow(img1),title(原始图像);
subplot(1,2,2),imshow(img0),title(取反图像);

技术图片

2、二值化

1)rgb2gray

一般保存的灰度图是24位的灰度,如果改为8bit灰度图。则可以用rgb2gray函数。

img= rgb2gray(img);

2)Matlab使用比较运算符二值化

imgPath = E:\opencv_pic\src_pic\pic4.bmp;
img = imread(imgPath); % 前景图
img = rgb2gray(img);
img1 = img > 60;
img2 = img > 120;
img3 = img > 180;
subplot(2,2,1),imshow(img), title(原始图像);
subplot(2,2,2),imshow(img1),title(阈值60);
subplot(2,2,3),imshow(img2),title(阈值120);
subplot(2,2,4),imshow(img3),title(阈值180);

技术图片

3)imshow参数指定图像灰度范围

imshow函数显示图片时,可以指定灰度等级。

imshow(img, [100,150])

小于100的直接设置为黑色,大于150的直接设置为白色。二者之间的设置为中等亮度。

imshow(img, [100,101])就可以实现二值化,图像分界线在100。

imgPath = E:\opencv_pic\src_pic\pic4.bmp;
img = imread(imgPath);
img= rgb2gray(img);
 
subplot(2,2,1),imshow(img), title(原始图像);
subplot(2,2,2),imshow(img,[50,100]),title(阈值50-100);
subplot(2,2,3),imshow(img, [100, 150]),title(阈值100-150);
subplot(2,2,4),imshow(img,[200,255]),title(阈值200-255);

技术图片

3、灰度直方图

灰度直方图:横坐标是灰度,纵坐标是该灰度在图像中出现的次数。

归一化直方图,纵坐标对应着该灰度级别在图像中出现的概率。

subplot(1,2,1),imshow(img), title(原始图像);
subplot(1,2,2),imhist(img),title(直方图);

技术图片

绘制归一化直方图。

subplot(1,2,1),imshow(img), title(原始图像);
subplot(1,2,2),p = imhist(img)/numel(img) ;
plot(p), title(归一化直方图);

技术图片

或者使用stem函数绘制归一化直方图。

subplot(1,2,1),imshow(img), title(原始图像);
[count,x] = imhist(img);
[m,n]=size(img);
count = count/(m*n);
subplot(1,2,2), stem(x, count) , title(归一化直方图);

技术图片

img = img > 100;
subplot(1,2,1),imshow(img), title(原始图像);
subplot(1,2,2),imhist(img), title(直方图);

把图片转换为二值化图像,直方图如下。灰度只有0和1,符合二值化图的特点。

技术图片

对这个直方图归一化,因为是二值化的图,所以归一化后就是个子的比例。

p = imhist(img)/numel(img)

p =

    0.6980

    0.3020

Imhist(img,b); 可以指定灰度等级b,默认是256级,实际工程中一般32级,如下图。

 技术图片

4、直方图均衡化

直方图均衡化即灰度均衡化,通过灰度映射,使输入图像的灰度转换为在每一级灰度上都有近似相同的点数分布,这样输出的直方图就是均匀的,图像获得较高的对比度和较大的动态范围。

直方图均衡化对图像进行非线性拉伸,重新分配图像像素值,使一定灰度范围内的像素数量大致相同。使用直方图均衡化技术来处理图像,能扩展图像的动态范围,扩宽灰度等级范围,提高对比度。

histeq(img,b);%b是灰度等级。2级均衡化就是二值化。

subplot(1,4,1),imshow(img), title(原始图像);
subplot(1,4,2),histeq(img, 2), title(2级直方图均衡化);
subplot(1,4,3),histeq(img, 32), title(32级直方图均衡化);
subplot(1,4,4),histeq(img), title(255级直方图均衡化);

技术图片

可见直方图均衡化之后,图像亮度变得均匀,提高了对比度。

调用img=img*0.3;调暗了图像,再次均衡化,图像的效果没有发生改变,可见均衡化可以用作图像处理前把图像转为统一的形式。

技术图片

下图是imhist(img)之后的直方图。可见histeq将图划分灰度等级获得比较均匀平坦的直方图。

subplot(1,4,1),imshow(img), title(原始图像);
subplot(1,4,2),imhist(img), title(原图直方图);
 
subplot(1,4,3),imshow(histeq(img)), title(降低亮度图后直方图均衡化);
subplot(1,4,4),imhist(histeq(img)), title(降低亮度直方图均衡化);

技术图片

再举一个例子,直方图均衡化调整较暗的图片。

图片较暗,动态范围低。直方图灰度等级偏暗,在高亮度区域分配像素很少。

技术图片

使用均衡化处理,然后显示,直方图各个灰度等级的数据较均匀。

g=histeq(img, 256);

imshow(g)

技术图片

 

尊重原创技术文章,转载请注明。

https://www.cnblogs.com/pingwen/p/12248360.html

 

图像灰度变换、二值化、直方图

标签:比较运算符   图像处理   html   注意   open   数据   new   尊重   count   

原文地址:https://www.cnblogs.com/pingwen/p/12248360.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!