标签:def 概念 忽略 scanf algorithm convert orm return ons
注:dp可能并不是求解该这些问题的最优算法,这里只是做一个dp 算法的简介。
定义:假设现有一个 string = abcdefghijklmn
最长连续子串:要求在原序列中连续,比如 str = abcd
、fghijklm
都是valid substring
最长连续子序列:相对顺序在原序列中不变即可;比如 str = afgh
、dfkn
等等都是valid subsequence
说完了上面的定义;下面来说一说怎么用dp求解最长连续子串和最长连续子序列;既然用到了dp 的方法求解,就要找出相关的状态转移方程。
#include <bits/stdc++.h>
using namespace std;
const int maxn=3e4+10;
int a[maxn],b[maxn],n;
int dp[maxn],ans; //dp[i]表示前i个的最长上升子序列
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;++i) scanf("%d",&a[i]);
for(int i=1;i<=n;++i) scanf("%d",&b[i]);
for(int i=1;i<=n;++i){
dp[i]=1;
for(int j=1;j<i;++j){
if(a[j]<a[i]&&b[j]<b[i]) dp[i]=max(dp[i],dp[j]+1);
ans=max(ans,dp[i]);
}
}
printf("%d\n",ans);
system("pause");
}
递推方程:
int f[maxn][maxn];
int solve(char *x, char *y)
{
int ans=0;
int lenx=strlen(x);
int leny=strlen(y);
for (int i=0;i<lenx;i++)
{
for (int j=0;j<leny;j++){
if (x[i]!=y[j]) f[i][j]=0;
else if(x[i]==y[j]) f[i][j]=f[i-1][j-1]+1;
ans=max(ans,f[i][j]);
}
}
return ans;
}
状态转移方程:
模板(花里胡哨的dp请忽略,网上版本,也可成二维数组):
int dp[maxn][maxn]; //a[1]~a[i]与b[1]~b[j]的最长公共子序列
int solve(int n,int m)
{
for (int i=0;i<=n;i++) dp[i][0] = 0;
for (int i=0;i<=m;i++) dp[0][i] = 0;
for (int i=1;i<=n;i++){ //n,m分别为两个数组的长度
for (int j=1;j<=m;j++){
if (a[i]==b[j]) dp[i][j]=dp[i-1][j-1]+1;
else dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
}
}
return dp[n][m];
}
dp[i][j]
的含义同最长公共子序列;
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm>
using namespace std;
const int maxn=3e3+10;
int a[maxn],b[maxn];
int dp[maxn][maxn]; //表示a[1]~a[i]与b[1]~b[j]且以b[j]为结尾的最长上升公共子序列
int main()
{
int n;
scanf("%d",&n);
for(int i=1;i<=n;++i) scanf("%d",&a[i]);
for(int i=1;i<=n;++i) scanf("%d",&b[i]);
for(int i=1;i<=n;++i){
for(int j=1;j<=n;++j){
if(a[i]==b[j]){
dp[i][j]=1;
for(int k=1;k<j;++k){
if(b[k]<a[i]) dp[i][j]=max(dp[i][j],dp[i-1][k]+1);
}
}
else dp[i][j]=dp[i-1][j];
}
}
int ans=0;
for(int i=1;i<=n;++i) ans=max(ans,dp[n][i]);
printf("%d\n",ans);
system("pause");
}
上面是未优化前的代码;起代码复杂度未O(n^3)
;其中的k循环可以被优化;优化后时间复杂度为O(n^2)
,看代码:
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm>
using namespace std;
const int maxn=3e3+10;
int a[maxn],b[maxn];
int dp[maxn][maxn]; //表示a[1]~a[i]与b[1]~b[j]且以b[j]为结尾的最长上升公共子序列
int main()
{
int n;
scanf("%d",&n);
for(int i=1;i<=n;++i) scanf("%d",&a[i]);
for(int i=1;i<=n;++i) scanf("%d",&b[i]);
for(int i=1;i<=n;++i){
int maxv=1;
for(int j=1;j<=n;++j){
dp[i][j]=dp[i-1][j];
if(a[i]==b[j]) dp[i][j]=max(dp[i][j],maxv);
if(b[j]<a[i]) maxv=max(maxv,dp[i][j]+1);
}
}
int ans=0;
for(int i=1;i<=n;++i) ans=max(ans,dp[n][i]);
printf("%d\n",ans);
system("pause");
}
标签:def 概念 忽略 scanf algorithm convert orm return ons
原文地址:https://www.cnblogs.com/StungYep/p/12254070.html