标签:wait mapr val tca get ado reducer nbsp cer
package cn.itcast.hadoop.mr;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class WordCountDriver {
public WordCountDriver() {
}
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
Configuration conf = new Configuration();
//conf.set("mapreduce.app-submission.cross-platform", "true"); // 跨平台,保证在 Windows 下可以提交 mr job
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(WordCountDriver.class);
job.setMapperClass(WordCountMapper.class);
job.setReducerClass(WordCountReducer.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path("/home/node-1/zhouriyue/input/"));
FileOutputFormat.setOutputPath(job, new Path("/home/node-1/zhouriyue/output/"));
/*FileInputFormat.setInputPaths(job, "/wordcount/input");
FileOutputFormat.setOutputPath(job, new Path("/wordcount/output"));*/
boolean b = job.waitForCompletion(true);
System.exit(b ? 0 : 1);
}
}
package cn.itcast.hadoop.mr;
import java.io.IOException;
import java.util.Arrays;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
public class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
public WordCountMapper() {
}
protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, IntWritable>.Context context) throws IOException, InterruptedException {
String line = value.toString();
String[] words = line.split(" ");
String[] var9 = words;
int var8 = words.length;
for(int var7 = 0; var7 < var8; ++var7) {
String word = var9[var7];
System.out.println(word+","+1);
context.write(new Text(word), new IntWritable(1));
}
}
}
package cn.itcast.hadoop.mr;
import java.io.IOException;
import java.util.Arrays;
import java.util.Iterator;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
public class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
public WordCountReducer() {
}
protected void reduce(Text key, Iterable<IntWritable> values, Reducer<Text, IntWritable, Text, IntWritable>.Context context) throws IOException, InterruptedException {
int count = 0;
IntWritable value;
System.out.println(key+","+count);
for(Iterator var6 = values.iterator(); var6.hasNext();) {
System.out.println("count:"+count+"var6:"+var6);
value = (IntWritable)var6.next();
count += value.get();
}
context.write(key, new IntWritable(count));
}
}
举一反三,借鉴别人的写出自己的才是真的好。
问题:求4.txt,5.txt,6.txt文件里所有数字的最大值。代码如下
package com.gxuwz.MaxValue;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
public class MaxValueDriver {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
job.setJarByClass(MaxValueDriver.class);
job.setMapperClass(MaxValueMapper.class);
job.setReducerClass(MaxValueReducer.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.setInputPaths(job,"/home/node-1/zhouriyue/data/");
FileOutputFormat.setOutputPath(job,new Path("/home/node-1/zhouriyue/maxvalue/"));
Boolean b = job.waitForCompletion(true);
System.exit(b?0:1);
}
}
package com.gxuwz.MaxValue;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
public class MaxValueMapper extends Mapper<LongWritable, Text,Text, Text> {
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String data = value.toString();
String[] values = data.split(" ");
for(int i = 0;i < values.length;i++) {
context.write(new Text("maxValue"),new Text(values[i]));
}
}
}
package com.gxuwz.MaxValue;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
import java.util.Iterator;
public class MaxValueReducer extends Reducer<Text, Text,Text,IntWritable> {
@Override
protected void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException {
int maxValue = 0;
Iterator datas = values.iterator();
Text v = null;
while (datas.hasNext()) {
v = (Text)datas.next();
System.out.println("v:"+v.toString());
int s = Integer.parseInt(""+v.toString());
if(s > maxValue) {
maxValue = s;
}
}
context.write(new Text("maxValue"),new IntWritable(maxValue));
}
}
标签:wait mapr val tca get ado reducer nbsp cer
原文地址:https://www.cnblogs.com/riyueqian/p/12254124.html