标签:技巧 line continue 没有 lse ons 写在前面 lin red
若两个字符串中每个字符的个数都是一样的,则称他们互为\(anagrams\)。现在定义两个字符串s,t是\(reducible~anagram\)的,必须满足下面的条件:
对于每个询问的字符串s,是否存在一个字符串t,使得t是s的\(irreducible~anagram\).分析题目条件可以将问题转换为:在t和s的任意等长前缀中,它们的字符集的个数必须是不同的(也就是确保它们不是\(anagrams\))
我们声明满足下面条件的字符串存在\(irreducible~anagram\)
求证这些条件后,利用前缀和的技巧可以很容易的解决本题。下面试证一下:
到此为止就可以放心做题了,但试图证明一下为何\(s[1] = s[n]~~and~~不同字符个数等于2\)的情况为何找不到。
假设字符只有a和b两种,而且\(s[1]=s[n]=a\),那么我们构造出来的串必须满足任意前缀中\(b\)的个数,都大于\(s\)对应前缀中b的个数。那么考虑\(s\)中最后出现\(b\)的位置\(x\),可以想到\(s[1..x-1]\)前缀比\(t[1..x-1]\)少一个\(b\),而\(s[x]=b\)得出现使得\(t[x]\)必须再放置一个\(b\),这样才能满足任意前缀中b得个数都要比s多,但此时已经没有\(b\)可以放了(因为\(s[1..x-1]\)就已经多放了一个b)所以在\(x\)这个位置,无法构造。
const int N = 200010 + 5;
char s[N];
int n, sum[N][26], q, l, r, cnt[26];
int main() {
scanf("%s", s+1);
n = strlen(s + 1);
for (int i = 1; i <= n;i++){
memcpy(sum[i], sum[i - 1], sizeof sum[i]);
sum[i][s[i] - 'a']++;
}
scanf("%d", &q);
while(q--){
scanf("%d%d", &l, &r);
if(r - l == 0){
puts("YES");
continue;
}
int x = 0;
for (int i = 0; i < 26;i++){
cnt[i] = sum[r][i] - sum[l - 1][i];
if(cnt[i])
x++;
}
if(s[l] == s[r] && x <= 2){
puts("NO");
}else
puts("YES");
}
return 0;
}
CF-1291 D - Irreducible Anagrams
标签:技巧 line continue 没有 lse ons 写在前面 lin red
原文地址:https://www.cnblogs.com/1625--H/p/12254833.html