标签:line tor 导入 exce palette ted 合并 grid max
# -*- coding: utf-8 -*- """ Created on Mon Feb 3 17:17:42 2020 @author: Administrator """ ‘‘‘ 01 读取数据 ;;; ‘‘‘ df1 = pd.read_excel("C:\\Users\\Administrator\\Desktop\\上海餐饮数据.xlsx") df1_length = len(df1) df1_columns = df1.columns.tolist() print(‘数据量为%i条‘ % len(df1)) print(df1.head()) ‘‘‘ 02 清洗数据 ;;; ‘‘‘ # 筛选数据,清除空值、为0的数据 data1 = df1[[‘类别‘,‘口味‘,‘环境‘,‘服务‘,‘人均消费‘]] data1.dropna(inplace = True) data1 = data1[(data1[‘口味‘]>0)&(data1[‘人均消费‘]>0)] # 计算性价比指数 data1[‘性价比‘] = (data1[‘口味‘] + data1[‘环境‘] + data1[‘服务‘]) / data1[‘人均消费‘] # 查看异常值 fig,axes = plt.subplots(1,3,figsize = (10,4)) data1.boxplot(column=[‘口味‘],ax = axes[0]) data1.boxplot(column=[‘人均消费‘],ax = axes[1]) data1.boxplot(column=[‘性价比‘],ax = axes[2]) # 创建函数1→ 删除异常值 def f1(data,col): q1 = data[col].quantile(q = 0.25) q3 = data[col].quantile(q = 0.75) iqr = q3-q1 t1 = q1 - 3 * iqr t2 = q3 + 3 * iqr return data[(data[col] > t1)&(data[col]<t2)][[‘类别‘,col]] # 数据异常值处理 data_kw = f1(data1,‘口味‘) data_rj = f1(data1,‘人均消费‘) data_xjb = f1(data1,‘性价比‘) ‘‘‘ 03 数据处理 ‘‘‘ # 创建函数2 → 标准化指标并排序 def f2(data,col): col_name = col + ‘_norm‘ data_gp = data.groupby(‘类别‘).mean() data_gp[col_name] = (data_gp[col] - data_gp[col].min())/(data_gp[col].max()-data_gp[col].min()) data_gp.sort_values(by = col_name, inplace = True, ascending=False) return data_gp # 指标标准化得分 data_kw_score = f2(data_kw,‘口味‘) data_rj_score = f2(data_rj,‘人均消费‘) data_xjb_score = f2(data_xjb,‘性价比‘) # 合并数据 data_final_q1 = pd.merge(data_kw_score,data_rj_score,left_index=True,right_index=True) # 合并口味、人均消费指标得分 data_final_q1 = pd.merge(data_final_q1,data_xjb_score,left_index=True,right_index=True) # 合并性价比指标得分 data_final_q1.head() ‘‘‘ 04 绘制图形 ‘‘‘ # 制作散点图、柱状图 # x轴为“人均消费”,y轴为“性价比得分”,点的大小为“口味得分” from bokeh.models import HoverTool from bokeh.palettes import brewer from bokeh.models.annotations import BoxAnnotation from bokeh.layouts import gridplot # 导入模块 # 添加size字段 data_final_q1[‘size‘] = data_final_q1[‘口味_norm‘] * 40 data_final_q1.index.name = ‘type‘ data_final_q1.columns = [‘kw‘,‘kw_norm‘,‘price‘,‘price_norm‘,‘xjb‘,‘xjb_norm‘,‘size‘] # 将中文改为英文 # 添加颜色参数 # 创建ColumnDataSource数据 source = ColumnDataSource(data_final_q1) # 设置标签显示内容 hover = HoverTool(tooltips=[("餐饮类型", "@type"), ("人均消费", "@price"), ("性价比得分", "@xjb_norm"), ("口味得分", "@kw_norm") ]) # 构建绘图空间 散点图 result = figure(plot_width=800, plot_height=250, title="餐饮类型得分情况" , x_axis_label = ‘人均消费‘, y_axis_label = ‘性价比得分‘, tools=[hover,‘box_select,reset,xwheel_zoom,pan,crosshair‘]) result.circle(x = ‘price‘,y = ‘xjb_norm‘,source = source, line_color = ‘black‘,line_dash = [6,4],fill_alpha = 0.6, size = ‘size‘) # 设置人均消费中间价位区间 price_mid = BoxAnnotation(left=40,right=80, fill_alpha=0.1, fill_color=‘navy‘) result.add_layout(price_mid) result.title.text_font_style = "bold" result.ygrid.grid_line_dash = [6, 4] result.xgrid.grid_line_dash = [6, 4] # 绘制柱状图 data_type = data_final_q1.index.tolist()# 提取横坐标 kw = figure(plot_width=800, plot_height=250, title=‘口味得分‘,x_range=data_type, tools=[hover,‘box_select,reset,xwheel_zoom,pan,crosshair‘]) kw.vbar(x=‘type‘, top=‘kw_norm‘, source=source,width=0.9, alpha = 0.8,color = ‘red‘) kw.ygrid.grid_line_dash = [6, 4] kw.xgrid.grid_line_dash = [6, 4] # 柱状图1 price = figure(plot_width=800, plot_height=250, title=‘人均消费得分‘,x_range=kw.x_range, tools=[hover,‘box_select,reset,xwheel_zoom,pan,crosshair‘]) price.vbar(x=‘type‘, top=‘price_norm‘, source=source,width=0.9, alpha = 0.8,color = ‘green‘) price.ygrid.grid_line_dash = [6, 4] price.xgrid.grid_line_dash = [6, 4] # 柱状图2 p = gridplot([[result],[kw], [price]]) # 组合图表 show(p)
标签:line tor 导入 exce palette ted 合并 grid max
原文地址:https://www.cnblogs.com/hero799/p/12256529.html