标签:return oss 扩大 理解 sdn __name__ ram https require
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2020/02/04 20:08 # @Author : dangxusheng # @Email : dangxusheng163@163.com # @File : isLand_loss.py ‘‘‘ 岛屿损失旨在减少类内变化,同时扩大类间差异 目的是在center loss的基础上, 进一步优化类间距离 https://blog.csdn.net/heruili/article/details/88912074 Loss = L_softmax + lamda * L_island ‘‘‘ from myToolsPkgs.pytorch_helper import * from torch.autograd import Function class IslandLoss(nn.Module): """ paper: https://arxiv.org/pdf/1710.03144.pdf url: https://blog.csdn.net/u013841196/article/details/89920441 """ def __init__(self, features_dim, num_class=10, alpha1=0.01, scale=1.0, batch_size=64): """ 初始化 :param features_dim: 特征维度 = c*h*w :param num_class: 类别数量 :param alpha: island loss的权重系数 [0,1] """ assert 0 <= alpha1 <= 1 super(IslandLoss, self).__init__() self.alpha1 = alpha1 self.num_class = num_class self.scale = scale self.batch_size = batch_size self.feat_dim = features_dim # store the center of each class , should be ( num_class, features_dim) self.feature_centers = nn.Parameter(torch.randn([num_class, features_dim])) # self.lossfunc = CenterLossFunc.apply init_weight(self, ‘normal‘) def forward(self, output_features, y_truth): """ 损失计算 :param output_features: conv层输出的特征, [b,c,h,w] :param y_truth: 标签值 [b,] :return: """ batch_size = y_truth.size(0) output_features = output_features.view(batch_size, -1) assert output_features.size(-1) == self.feat_dim centers_pred = self.feature_centers.index_select(0, y_truth.long()) # [b,features_dim] diff = output_features - centers_pred # 1 先求 center loss loss_center = 1 / 2.0 * (diff.pow(2).sum()) / self.batch_size # 2 再求 类心余弦距离 # 每个类心求余弦距离,+1 使得范围为0-2,越接近0表示类别差异越大,从而优化Loss即使得类间距离变大。 centers = self.feature_centers # Ci X Ci.T centers_mm = centers.mm(centers.t()) # [num_class, num_class] # 求出每个类别的向量模长 ||Ci|| centers_mod = torch.sum(centers * centers, dim=1, keepdim=True).sqrt() # [num_class, 1] centers_mod_mm = centers_mod.mm(centers_mod.t()) # [num_class,num_class] # 求出 cos距离 矩阵, 这是一个对称矩阵 centers_cos_dis = centers_mm / centers_mod_mm # 将对角线上元素置0, 代表同一个类别的距离不考虑 angle_mtx = torch.eye(self.num_class) # 对角线为1, mask = ~angle_mtx.gt(0) mask = angle_mtx.masked_fill_(mask, 1) * mask # 对角线为0, 其他为1 centers_cos_dis += 1 centers_cos_dis *= mask sum_centers_cos_dis = centers_cos_dis.sum() / 2 loss_island = loss_center + self.alpha1 * sum_centers_cos_dis return loss_island if __name__ == ‘__main__‘: import random # test 1 num_class = 10 batch_size = 10 feat_dim = 5 ct = IslandLoss(feat_dim, num_class, 0.1, 1., batch_size) y = torch.Tensor([random.choice(range(num_class)) for i in range(batch_size)]) feat = torch.zeros(num_class, feat_dim).requires_grad_() print(list(ct.parameters())) print(ct.feature_centers.grad) out = ct(feat, y) print(out.item()) out.backward() print(ct.feature_centers.grad) print(feat.grad)
标签:return oss 扩大 理解 sdn __name__ ram https require
原文地址:https://www.cnblogs.com/dxscode/p/12267114.html