#if (defined WIN32 || defined WIN64) && defined CVAPI_EXPORTS #define CV_EXPORTS __declspec(dllexport) #else #define CV_EXPORTS #endif #ifndef CVAPI #define CVAPI(rettype) CV_EXTERN_C CV_EXPORTS rettype CV_CDECL #endif /* CV_FUNCNAME macro defines icvFuncName constant which is used by CV_ERROR macro */ #ifdef CV_NO_FUNC_NAMES #define CV_FUNCNAME( Name ) #define cvFuncName "" #else #define CV_FUNCNAME( Name ) static char cvFuncName[] = Name #endif /* CV_CALL macro calls CV (or IPL) function, checks error status and signals a error if the function failed. Useful in "parent node" error procesing mode */ #define CV_CALL( Func ) { Func; CV_CHECK(); } /* Simplified form of CV_ERROR */ #define CV_ERROR_FROM_CODE( code ) CV_ERROR( code, "" ) /* CV_CHECK macro checks error status after CV (or IPL) function call. If error detected, control will be transferred to the exit label. */ #define CV_CHECK() { if( cvGetErrStatus() < 0 ) CV_ERROR( CV_StsBackTrace, "Inner function failed." ); } #define __BEGIN__ { #define __END__ goto exit; exit: ; } #define __CLEANUP__ #define EXIT goto exit /* . CV_BLUR_NO_SCALE (简单不带尺度变换的模糊) - 对每个象素的 param1×param2 领域求和。如果邻域大小是变化的,可以事先利用函数 cvIntegral 计算积分图像。 . CV_BLUR (simple blur) - 对每个象素param1×param2邻域 求和并做尺度变换 1/(param1.param2). . CV_GAUSSIAN (gaussian blur) - 对图像进行核大小为 param1×param2 的高斯卷积 . CV_MEDIAN (median blur) - 对图像进行核大小为param1×param1 的中值滤波(i.e. 邻域是方的). . CV_BILATERAL (双向滤波) - 应用双向 3x3 滤波,彩色sigma=param1,空间 sigma=param2. 平滑操作的第一个参数. */ CV_IMPL void cvSmooth( const void* srcarr, void* dstarr, int smooth_type, int param1, int param2, double param3, double param4 ) { CvBoxFilter box_filter; //定义一个CvBoxFilter的对象 CvSepFilter gaussian_filter; //定义一个CvSepFilter的对象 CvMat* temp = 0; //temp指针为空 CV_FUNCNAME( "cvSmooth" ); /* CV_FUNCNAME macro defines icvFuncName constant which is used by CV_ERROR macro */ __BEGIN__;//这个没啥用,相当于告诉你我要开始干活了 int coi1 = 0, coi2 = 0;//COI感兴趣通道,类似于ROI CvMat srcstub, *src = (CvMat*)srcarr;//void指针进行类型转换 CvMat dststub, *dst = (CvMat*)dstarr;//void指针进行类型转换 CvSize size; int src_type, dst_type, depth, cn; double sigma1 = 0, sigma2 = 0; bool have_ipp = icvFilterMedian_8u_C1R_p != 0; CV_CALL( src = cvGetMat( src, &srcstub, &coi1 )); CV_CALL( dst = cvGetMat( dst, &dststub, &coi2 )); /* CV_CALL macro calls CV (or IPL) function, checks error status and signals a error if the function failed. Useful in "parent node" error procesing mode */ if( coi1 != 0 || coi2 != 0 )//COI必须都是0等价于coi1==0&&coi2==0 CV_ERROR( CV_BadCOI, "" ); src_type = CV_MAT_TYPE( src->type ); //#define CV_MAT_TYPE(flags) ((flags) & CV_MAT_TYPE_MASK) //#define CV_MAT_TYPE_MASK (CV_DEPTH_MAX*CV_CN_MAX - 1) 结果为:01 1111 1111 //#define CV_CN_MAX 64 //#define CV_CN_SHIFT 3 //#define CV_DEPTH_MAX (1 << CV_CN_SHIFT) // dst_type = CV_MAT_TYPE( dst->type ); depth = CV_MAT_DEPTH(src_type); //#define CV_MAT_DEPTH(flags) ((flags) & CV_MAT_DEPTH_MASK) //#define CV_MAT_DEPTH_MASK (CV_DEPTH_MAX - 1) 结果为: 00 0000 0111 //#define CV_CN_SHIFT 3 //#define CV_DEPTH_MAX (1 << CV_CN_SHIFT) cn = CV_MAT_CN(src_type); //#define CV_MAT_CN(flags) ((((flags) & CV_MAT_CN_MASK) >> CV_CN_SHIFT) + 1) //#define CV_MAT_CN_MASK ((CV_CN_MAX - 1) << CV_CN_SHIFT) 结果为: 11 1111 1000 //#define CV_CN_MAX 64 //#define CV_CN_SHIFT 3 size = cvGetMatSize(src); //cvGetSize(): if( !CV_ARE_SIZES_EQ( src, dst ))//判断输入输出大小是否相等 CV_ERROR( CV_StsUnmatchedSizes, "" ); if( smooth_type != CV_BLUR_NO_SCALE && !CV_ARE_TYPES_EQ( src, dst ))//除了CV_BLUR_NO_SCALE情况下,输入输出矩阵类型应该相同 CV_ERROR( CV_StsUnmatchedFormats, "The specified smoothing algorithm requires input and ouput arrays be of the same type" ); /* param2 平滑操作的第二个参数. 对于简单/非尺度变换的高斯模糊的情况,如果param2的值 为零,则表示其被设定为param1。 param3 对应高斯参数的 Gaussian sigma (标准差). 如果为零,则标准差由下面的核尺寸计算: sigma = (n/2 - 1)*0.3 + 0.8, 其中 n=param1 对应水平核, n=param2 对应垂直核. */ if( smooth_type == CV_BLUR || smooth_type == CV_BLUR_NO_SCALE || smooth_type == CV_GAUSSIAN || smooth_type == CV_MEDIAN ) { // automatic detection of kernel size from sigma if( smooth_type == CV_GAUSSIAN ) { sigma1 = param3; sigma2 = param4 ? param4 : param3; //sigma1,sigma2 为param3和param4,如果param4为0则sigma2为param3的值 if( param1 == 0 && sigma1 > 0 ) param1 = cvRound(sigma1*(depth == CV_8U ? 3 : 4)*2 + 1)|1; if( param2 == 0 && sigma2 > 0 ) param2 = cvRound(sigma2*(depth == CV_8U ? 3 : 4)*2 + 1)|1; //p1,p2为0时:使用sigma1*(depth == CV_8U ? 3 : 4)*2 + 1计算窗口大小(为奇数) } if( param2 == 0 ) param2 = size.height == 1 ? 1 : param1; if( param1 < 1 || (param1 & 1) == 0 || param2 < 1 || (param2 & 1) == 0 )//param1,param2为偶数或者负数,报错 CV_ERROR( CV_StsOutOfRange, "Both mask width and height must be >=1 and odd" ); if( param1 == 1 && param2 == 1 )//param1,param2为1,图像不变 { cvConvert( src, dst ); EXIT; } } //================================================================================================================= //使用IPP加速时: if( have_ipp && (smooth_type == CV_BLUR || smooth_type == CV_MEDIAN) && size.width >= param1 && size.height >= param2 && param1 > 1 && param2 > 1 ) { CvSmoothFixedIPPFunc ipp_median_box_func = 0; if( smooth_type == CV_BLUR ) { ipp_median_box_func = src_type == CV_8UC1 ? icvFilterBox_8u_C1R_p : src_type == CV_8UC3 ? icvFilterBox_8u_C3R_p : src_type == CV_8UC4 ? icvFilterBox_8u_C4R_p : src_type == CV_32FC1 ? icvFilterBox_32f_C1R_p : src_type == CV_32FC3 ? icvFilterBox_32f_C3R_p : src_type == CV_32FC4 ? icvFilterBox_32f_C4R_p : 0;//这个写法很给力。。。 } else if( smooth_type == CV_MEDIAN ) { ipp_median_box_func = src_type == CV_8UC1 ? icvFilterMedian_8u_C1R_p : src_type == CV_8UC3 ? icvFilterMedian_8u_C3R_p : src_type == CV_8UC4 ? icvFilterMedian_8u_C4R_p : 0; } if( ipp_median_box_func ) { CvSize el_size = { param1, param2 }; CvPoint el_anchor = { param1/2, param2/2 }; int stripe_size = 1 << 14; // the optimal value may depend on CPU cache, // overhead of the current IPP code etc. const uchar* shifted_ptr; int y, dy = 0; int temp_step, dst_step = dst->step; CV_CALL( temp = icvIPPFilterInit( src, stripe_size, el_size )); shifted_ptr = temp->data.ptr + el_anchor.y*temp->step + el_anchor.x*CV_ELEM_SIZE(src_type); temp_step = temp->step ? temp->step : CV_STUB_STEP; for( y = 0; y < src->rows; y += dy ) { dy = icvIPPFilterNextStripe( src, temp, y, el_size, el_anchor ); IPPI_CALL( ipp_median_box_func( shifted_ptr, temp_step, dst->data.ptr + y*dst_step, dst_step, cvSize(src->cols, dy), el_size, el_anchor )); } EXIT; } } //================================================================================================================= if( smooth_type == CV_BLUR || smooth_type == CV_BLUR_NO_SCALE ) { CV_CALL( box_filter.init( src->cols, src_type, dst_type, smooth_type == CV_BLUR, cvSize(param1, param2) )); //初始化box_filter CV_CALL( box_filter.process( src, dst )); } else if( smooth_type == CV_MEDIAN ) { if( depth != CV_8U || cn != 1 && cn != 3 && cn != 4 )//中值滤波通道数必须为1,3,4,深度必须是CV_8U CV_ERROR( CV_StsUnsupportedFormat, "Median filter only supports 8uC1, 8uC3 and 8uC4 images" ); //icvMedianBlur_8u_CnR下节介绍 IPPI_CALL( icvMedianBlur_8u_CnR( src->data.ptr, src->step, dst->data.ptr, dst->step, size, param1, cn )); } else if( smooth_type == CV_GAUSSIAN ) { CvSize ksize = { param1, param2 };//初始核大小 float* kx = (float*)cvStackAlloc( ksize.width*sizeof(kx[0]) );//分配栈,float类型大小为x轴核宽度 float* ky = (float*)cvStackAlloc( ksize.height*sizeof(ky[0]) );//分配栈,float类型大小为y轴核宽度 CvMat KX = cvMat( 1, ksize.width, CV_32F, kx );//float类型大小为x轴核宽度,向量 CvMat KY = cvMat( 1, ksize.height, CV_32F, ky );//float类型大小为x轴核宽度,向量 CvSepFilter::init_gaussian_kernel( &KX, sigma1 ); if( ksize.width != ksize.height || fabs(sigma1 - sigma2) > FLT_EPSILON ) CvSepFilter::init_gaussian_kernel( &KY, sigma2 ); //#define FLT_EPSILON 1.192092896e-07F /* smallest such that 1.0+FLT_EPSILON != 1.0 */ //================================================================================================ //FLT_EPSILON用于float类型。 //它是满足 x+1.0不等于1.0的最小的正数 //也就是说,所有比FLT_EPSILON小的正数x,x+1.0==1.0都是成立的。 //================================================================================================ else KY.data.fl = kx; //================================================================================================================= //使用IPP加速时: if( have_ipp && size.width >= param1*3 && size.height >= param2 && param1 > 1 && param2 > 1 ) { int done; CV_CALL( done = icvIPPSepFilter( src, dst, &KX, &KY, cvPoint(ksize.width/2,ksize.height/2))); if( done ) EXIT; } //================================================================================================================= CV_CALL( gaussian_filter.init( src->cols, src_type, dst_type, &KX, &KY )); CV_CALL( gaussian_filter.process( src, dst )); } else if( smooth_type == CV_BILATERAL ) { if( param1 < 0 || param2 < 0 )//param1,param2检测合法性 CV_ERROR( CV_StsOutOfRange, "Thresholds in bilaral filtering should not bee negative" ); //如果param1或param2为0,则加1 param1 += param1 == 0; param2 += param2 == 0; //depth和chanel的参数检测 if( depth != CV_8U || cn != 1 && cn != 3 ) CV_ERROR( CV_StsUnsupportedFormat, "Bilateral filter only supports 8uC1 and 8uC3 images" ); //icvBilateralFiltering_8u_CnR函数下节讲解 IPPI_CALL( icvBilateralFiltering_8u_CnR( src->data.ptr, src->step, dst->data.ptr, dst->step, size, param1, param2, cn )); } __END__; //释放temp cvReleaseMat( &temp ); }
原文地址:http://blog.csdn.net/tonyshengtan/article/details/40741691