码迷,mamicode.com
首页 > 其他好文 > 详细

MTHE/STAT 353

时间:2020-02-08 19:23:46      阅读:107      评论:0      收藏:0      [点我收藏+]

标签:ready   wing   sof   less   The   matrix   student   help   loser   


Queen’s University
Department of Mathematics and Statistics
MTHE/STAT 353
Homework 3 Due February 6, 2020
• For each question, your solution should start on a fresh page. You can write your
solution using one of the following three formats:
(1) Start your solution in the space provided right after the problem statement,
and use your own paper if you need extra pages.
(2) Write your whole solution using your own paper, and make sure to number
your solution.
(3) Write your solution using document creation software (e.g., Word or LaTeX).
• Write your name and student number on the first page of each solution.
• For each question, photograph or scan each page of your solution (unless your solution
has been typed up and is already in electronic format), and combine the
separate pages into a single file. Then upload each file (one for each question), into
the appropriate box in Crowdmark.
MTHE/STAT 353作业代做、代写MTHE/STAT 353 -- Homework 3, 2020 2
Student Number Name
1. Let X1, . . . , Xn be independent and identically distributed continuous random variables
and let X(1), . . . , X(n) denote their order statistics.
(a) Find P(Xn = X(k)) for k = 1, . . . , n. Hint: Note that all orderings of X1, . . . , Xn
are equally likely.
(b) Show that (Xn, X(n)) does not have a joint pdf.
MTHE/STAT 353 -- Homework 3, 2020 3
Student Number Name
2. Let X1, . . . , Xn be independent exponential random variables with parameter λ, and let
X(1), . . . , X(n) be their order statistics. Show that
Y1 = nX(1), Yr = (n + 1 − r)(X(r) − X(r−1)), r = 2, . . . , n
are also independent and have the same joint distribution as X1, . . . , Xn. Hint: You may
use the fact that the determinant of a lower triangular matrix (a square matrix whose
entries above the main diagonal are all zero) is the product of the diagonal entries.
MTHE/STAT 353 -- Homework 3, 2020 4
Student Number Name
3. Let X1, X2, X3 be independent, identically distributed continuous random variables. Find
the probability that the second largest value (i.e., the median) is closer to the smallest
value than to the largest value, when the common distribution of the Xi
is
(a) the Uniform(0, 1) distribution (a symmetry argument should suffice here);
(b) the Exponential(λ) distribution.
MTHE/STAT 353 -- Homework 3, 2020 5
Student Number Name
4. Let X1, . . . , Xn be mutually independent Uniform(0,1) random variables. Find the probability
that the interval (min(X1, . . . , Xn), max(X1, . . . , Xn)) contains the value 1/2 and
find the smallest n such that this probability is at least 0.95.
MTHE/STAT 353 -- Homework 3, 2020 6
Student Number Name
5. Let X1, X2, . . . be a sequence of independent random variables with the exponential distribution
with mean 1, and let X(n) = max(X1, . . . , Xn). For x > 0, show that
limn→∞P(X(n) − ln n ≤ x) = exp(−e−x).

如有需要,请加QQ:99515681 或邮箱:99515681@qq.com 微信:codehelp

MTHE/STAT 353

标签:ready   wing   sof   less   The   matrix   student   help   loser   

原文地址:https://www.cnblogs.com/lyapyth/p/12284178.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!