码迷,mamicode.com
首页 > 其他好文 > 详细

为什么逻辑回归损失函数不用均方损失/二元逻辑回归的损失函数适合采用对数损失函数

时间:2020-02-10 18:28:05      阅读:343      评论:0      收藏:0      [点我收藏+]

标签:为什么   因此   width   梯度下降法   height   sof   多个   解决   预测   

逻辑回归可以用于处理二元分类问题,将输出值控制在[0,1]区间内,为确保输出值时钟若在0到1之间,采用sigmoid函数,其具有该特性,将线性回归训练得到的模型输出数据作z = x1*w1+x2*w2+...+xn*wn+b代入得到y,保证了y在0~1之间

技术图片

逻辑回归中用到sigmoid函数,若用均方误差则为非凸函数,有多个极小值,采用梯度下降法容易现如局部最优解中

技术图片

因此在二元逻辑回归的损失函数一般采用对数损失函数

技术图片

y‘是x代入得到的预测值,介于0~1之间的;

若标签值为1,我们希望预测的结果也是越接近1越好,越接近说明损失越小 =》》后项1 - y为 0 直接消掉,则-y log(y‘)中y‘越接近1,则式子越接近0 ,损失和越小

同理,若标签值为0,则前项消掉,后项-log(1 - y‘)预测值越接近0,式子越小

 

softmax可以解决多元分类问题

 

为什么逻辑回归损失函数不用均方损失/二元逻辑回归的损失函数适合采用对数损失函数

标签:为什么   因此   width   梯度下降法   height   sof   多个   解决   预测   

原文地址:https://www.cnblogs.com/Theo-sblogs/p/12291527.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!