标签:随机 梯度 遗传算法 过程 最大 rate src 文献 使用
目录
Reservoir Computing
? 为了减少训练过程 的计算负 担以 及克服记忆渐消等问题 , Jaeger 于 2001 年提出回声状态网络(Echo State Networks, ESNs)[1] , Maass 于 2002 年提出流体状态机 2 .这两种方法虽然提出的角度不同 , 但其本质都可以认为是对传统的递归神经网 络训练算法的改进 .D Verstraeten 等在文献[ 3] 中以实验 的方式证明了ESNs和LSMs在本质上是一致的,并将其 统一命名为“储备池计算”(Reservoir Computing)
神经网络方法在具体问题上存在问题
? 1: 时序问题虽然可以解决, 但存在算法复杂, 计算量大。
? 2: 收敛速度慢,网络结构难以确定。
? 3: 记忆渐消问题:随时间步骤的加长 , 误差梯度可能消失或者产生畸变。
? ESNs 最大的优势是简化了网络的训练过程 , 解决了传 统递归神经网络结构难以确定,训练算法过于复杂的问题 , 同时也克服了 递归网络存在的记忆渐消问题
M个输入
N个处理点
L个输出
状态变量 W,输入输出对状态变量的连接权矩阵W(in),W(back),三项均为随机产生, 产生后就固定不变;
W(out)为训练得到;
f(out)取恒等函数:因为输出层一般线性;
摘抄:采样阶段首先任意选定网络的初始状态 , 但是通 常情况下选取网络的初始状态为0 ,即 x(0)=0.训练样 本 ( u (n ) , n = 1 , 2 , ... , M ) 经 过 输 入 连 接 权 W i n , 样 本 数 据 y (n )经 过 反 馈 连 接 权 W b a c k 分 别 被 加 到 储 备 池 , 按 照系统(1)状态方程和输出方程, 依次完成系统状态的计算和相 应输出 y (n )的 计算与收集 .注意每一时刻系统状态 x (n)的计算 , 都 需要将样本数据 y(n)写入到输出单元 .为了计算输出 连接权矩阵 , 需要从某一时刻开始收集(采样)内部状 态变量 .这里假定从 m 时刻开始收集系统状态 , 并以向 量(x1(i),x2(i),...,xN(i))(i=m,m+1, ...,M)为行 构 成 矩 阵 B (M - m + 1 , N ) , 同 时 相 应 的 样 本 数 据 y (n),也被收集,并构成一个列向量 T(M -m +1,1).这里需 要说明的是 :
(1)如果系统包含有输入到输出 、输出到输出的连 接权 , 那么在收集系统的状态矩阵 B 时 , 还需要 收集相 应的输入和输出部分 ;
(2 ) 为 了 消 除 任 意 初 始 状 态 对 系 统 动 态 特 性 的 影 响 , 总是从某一时刻后才 开始收 集系统的 状态 .从 该时 刻开始 , 可以认为系统反 映的是 输入 、输出 样本数 据之 间的映射关系 .
寻优参数包括三个 :
缺点:
遗传算法本身的搜索盲目性导致计算量 过大 , 以及容易陷入局部最优的问题限制了其在储备池参数优化的应用
比经典 ESNs 更为一般的形式 : x(n +1)=(1 -αΔt) x(n) + Δt f (Winu(n +1) + Wx(n) )
同时也引入了两个全局参数 Δt 和 α, 其中 Δt 是离散化,时间间隔与系统时间常数的比值, α叫做decay rate .
进而建立了针对全局参数 Δt 和 α的随机梯度下降优化算法 .
储备池计算概述彭 宇 1 , 王 建 民 1 , 2 , 彭 喜 元 1
标签:随机 梯度 遗传算法 过程 最大 rate src 文献 使用
原文地址:https://www.cnblogs.com/liguo-wang/p/12291720.html