标签:download uri 思路 软件下载 变形 png 使用 百度网 适应
百度云盘地址:待上传
使用方法:下载观看,能保证高清清晰度,针对百度网盘限速,请使用PanDownload
软件下载,该软件的下载地址:https://www.lanzous.com/i8ua9na;
分析:原式\(=\cfrac{2cos^210^{\circ}}{2\cdot 2sin10^{\circ}cos10^{\circ}}-sin10^{\circ}(\cfrac{cos5^{\circ}}{sin5^{\circ}}-\cfrac{sin5^{\circ}}{cos5^{\circ}})\)
\(=\cfrac{cos10^{\circ}}{2sin10^{\circ}}-sin10^{\circ}(\cfrac{cos^25^{\circ}-sin^25^{\circ}}{sin5^{\circ}cos5^{\circ}})\)
\(=\cfrac{cos10^{\circ}}{2sin10^{\circ}}-sin10^{\circ}\cfrac{2cos10^{\circ}}{2sin5^{\circ}cos5^{\circ}})\)
\(=\cfrac{cos10^{\circ}}{2sin10^{\circ}}-2cos10^{\circ}\)
\(==\cfrac{cos10^{\circ}}{2sin10^{\circ}}-\cfrac{2cos10^{\circ}\cdot 2sin10^{\circ}}{2sin10^{\circ}}\)
\(=\cfrac{cos10^{\circ}-2sin20^{\circ}}{2sin10^{\circ}}\)
\(=\cfrac{cos10^{\circ}-2sin(30^{\circ}-10^{\circ})}{2sin10^{\circ}}\)
\(=\cfrac{cos10^{\circ}-cos10^{\circ}+2\cdot \cfrac{\sqrt{3}}{2}sin10^{\circ}}{2sin10^{\circ}}\)
\(=\cfrac{\sqrt{3}}{2}\)。
分析:原式\(=\cfrac{cos10^{\circ}-\sqrt{3}cos(100^{\circ})}{\sqrt{1-sin10^{\circ}}}\)
\(=\cfrac{cos10^{\circ}+\sqrt{3}sin10^{\circ}}{\sqrt{1-sin10^{\circ}}}\)
\(=\cfrac{cos10^{\circ}+\sqrt{3}sin10^{\circ}}{\sqrt{(cos5^{\circ}-sin5^{\circ})^2}}\)
\(=\cfrac{cos10^{\circ}+\sqrt{3}sin10^{\circ}}{(cos5^{\circ}-sin5^{\circ})^2}\)
\(=\cfrac{2sin(10^{\circ}+30^{\circ})}{-\sqrt{2}sin(5^{\circ}-45^{\circ})}\)
\(=\cfrac{2sin40^{\circ}}{\sqrt{2}sin40^{\circ}}=\sqrt{2}\)。
分析:原式\(=\cfrac{cos40^{\circ}}{cos25^{\circ}\cdot \sqrt{(sin20^{\circ}-cos20^{\circ})^2}}\)
\(=\cfrac{cos40^{\circ}}{cos25^{\circ}\cdot |sin20^{\circ}-cos20^{\circ}|}\)
\(=\cfrac{cos^220^{\circ}-sin^220^{\circ}}{cos25^{\circ}(cos20^{\circ}-sin20^{\circ})}\)
\(=\cfrac{cos20^{\circ}+sin20^{\circ}}{cos25^{\circ}}\)
\(=\cfrac{\sqrt{2}sin(20^{\circ}+45^{\circ})}{cos25^{\circ}}\)
\(=\cfrac{\sqrt{2}sin65^{\circ}}{cos25^{\circ}}=\sqrt{2}\).
分析:原式=\(\cfrac{\sqrt{3}\cfrac{sin12^{\circ}}{cos12^{\circ}}-3\cfrac{cos12^{\circ}}{cos12^{\circ}}}{2(2cos^212^{\circ}-1)sin12^{\circ}}\)
\(=\cfrac{\sqrt{3}\cdot \cfrac{sin12^{\circ}-\sqrt{3}cos12^{\circ}}{cos12^{\circ}}}{2cos24^{\circ}sin12^{\circ}}\)
\(=\cfrac{\sqrt{3}\cdot 2sin(12^{\circ}-60^{\circ})}{2cos24^{\circ}sin12^{\circ}cos12^{\circ}}\)
\(=\cfrac{2\sqrt{3}sin(-48^{\circ})}{sin24^{\circ}cos24^{\circ}}=-4\sqrt{3}\)。
分析:由任意\(x\)都有\(f(\cfrac{\pi}{4}+x)=f(\cfrac{\pi}{4}-x)\)成立,可知\(x=\cfrac{\pi}{4}\)为函数的一条对称轴,
而正弦型或余弦型函数在对称轴处必然会取到最值,故\(f(\cfrac{\pi}{4})=\pm 2\),选B。
解后反思:此题目如果不注意函数的性质,往往会想到求\(\omega\)和\(\phi\),这样思路就跑偏了。
分析:\(f(x)=2sin(2x+\cfrac{\pi}{6})+1\),
法1:比较繁琐,令\(2x+\cfrac{\pi}{6}=k\pi+\cfrac{\pi}{2}\),\(k\in Z\),则\(x=\cfrac{k\pi}{2}+\cfrac{\pi}{6}\),\(k\in Z\),即对称轴有无数条,
令\(k=0\),得到其中的一条对称轴为\(x=\cfrac{\pi}{6}\),当\(k\)取其他的值时,都不能得到其他的选项,故选\(B\)。
法2:比较简单,利用函数在对称轴处的函数值能取到最值,故只需验证即可,
比如,将\(x=\cfrac{\pi}{12}\)代入\(sin(2x+\cfrac{\pi}{6})\),即\(sin\cfrac{\pi}{3}\),并不能使得其取到最值\(\pm 1\),故舍去\(A\);
将\(x=\cfrac{\pi}{6}\)代入\(sin(2x+\cfrac{\pi}{6})\),即\(sin\cfrac{\pi}{2}\),能使得其取到最值\(+1\),故\(B\)必然满足;用同样的方法可以验证其余的选项错误;
分析:只需要考虑函数\(y=cos(2x+\cfrac{\pi}{6})\)的对称性即可,由\(2x+\cfrac{\pi}{6}=k\pi\),\(k\in Z\),
得到对称轴\(x=\cfrac{k\pi}{2}-\cfrac{\pi}{12}\),由题可知,对称轴必须在\([0,\cfrac{\pi}{2}]\)内,令\(k=1\),得到对称轴为\(x=\cfrac{5}{12}\),
又两个零点\(x_1\)和\(x_2\)关于对称轴\(x=\cfrac{5}{12}\)对称,故\(x_1+x_2=\cfrac{5}{6}\)。
分析:\(y=f(x)=\sqrt{a^2+1}sin(x+\phi)\),其中\(tan\phi=\cfrac{1}{a}\),
由函数\(f(x)=asinx+cosx\)的图像关于直线\(x=\cfrac{\pi}{6}\)对称,可知\(\phi=\cfrac{\pi}{3}\),
则\(a=\cfrac{\sqrt{3}}{3}\),又\(g(x)=sinx+\cfrac{\sqrt{3}}{3}cosx=\cfrac{2\sqrt{3}}{3}sin(x+\cfrac{\pi}{6})\),
逐项验证,可知选\(D\)。
分析:由于\(f'(x)=\omega Acos(\omega x+\phi)\),由\(\cfrac{T}{4}=\cfrac{3\pi}{2}-\cfrac{\pi}{2}=\pi\),故\(T=4\pi\),故\(\omega=\cfrac{2\pi}{4\pi}=\cfrac{1}{2}\),
又由图可知,\(\omega A=\cfrac{1}{2}A=2\),故\(A=4\),又由图\(f'(\cfrac{\pi}{2})=0=2cos(\cfrac{1}{2}\times \cfrac{\pi}{2}+\phi)\),即\(\cfrac{\pi}{4}+\phi=k\pi+\cfrac{\pi}{2}\),\(k\in Z\),故\(\phi=k\pi+\cfrac{\pi}{4}\),令\(k=0\),即\(\phi=\cfrac{\pi}{4}\in (0,\pi)\),
故函数\(f(x)=4sin(\cfrac{1}{2}x+\cfrac{\pi}{4})\),则\(f(\cfrac{\pi}{2})=4\),故选\(D\)。
分析:由图可知,\(\cfrac{T}{2}=\cfrac{3\pi}{8}-\cfrac{\pi}{8}=\cfrac{\pi}{4}\),则\(T=\cfrac{\pi}{2}\),故\(\omega=\cfrac{\pi}{T}=2\),
又当\(x=\cfrac{3\pi}{8}\)时,\(2\times \cfrac{3\pi}{8}+\phi=k\pi\),\(k\in Z\),则\(\phi=k\pi-\cfrac{3\pi}{4}\),
令\(k=1\),则\(\phi=\pi-\cfrac{3\pi}{4}=\cfrac{\pi}{4}\in (-\cfrac{\pi}{2},\cfrac{\pi}{2})\),又\(x=0\)时,\(y=1\),
即\(Atan(2\times 0+\cfrac{\pi}{4})=1\),故\(A=1\),即\(f(x)=tan(2x+\cfrac{\pi}{4})\),
故\(f(\cfrac{\pi}{24})=tan(2\times \cfrac{\pi}{24}+\cfrac{\pi}{4})=\sqrt{3}\)。
分析:由于函数\(y=sin(ωx+φ)\)的最小正周期为\(π\),故\(\omega=2\),又图象关于点\((-\cfrac{3\pi}{8},0)\)对称,
则\(2\times (-\cfrac{3\pi}{8})+\phi=k\pi\),故\(\phi=k\pi+\cfrac{3\pi}{4}\),\(k\in Z\) ,
当\(k=0\)时,\(\phi=\cfrac{3\pi}{4}\in (0,\pi)\),故解析式为\(y=sin(2x+\cfrac{3\pi}{4})\).
法1:变形得到\(\cfrac{\sqrt{2}}{2}(sin\alpha+cos\alpha)=\cfrac{\sqrt{2}}{10}\),
解得\(sin\alpha+cos\alpha=\cfrac{1}{5}\),又因为\(\alpha\)为第二象限角,
再结合勾股数可得\(sin\alpha=\cfrac{4}{5},cos\alpha=-\cfrac{3}{5}\);
故\(tan\alpha=-\cfrac{4}{3}\),又由八卦图法可知\(\cfrac{\alpha}{2}\)在第一、三象限,
故\(tan\cfrac{\alpha}{2}>0\),再由\(tan\alpha=-\cfrac{4}{3}=\cfrac{2tan\cfrac{\alpha}{2}}{1-(tan\cfrac{\alpha}{2})^2}\),
解方程得到\(tan\cfrac{\alpha}{2}=2\);
法2:同上法,得到\(sin\alpha=\cfrac{4}{5},cos\alpha=-\cfrac{3}{5}\);
\(tan\cfrac{\alpha}{2}=\cfrac{sin\cfrac{\alpha}{2}}{cos\cfrac{\alpha}{2}}\)
\(=\cfrac{2sin\cfrac{\alpha}{2}cos\cfrac{\alpha}{2}}{2cos\cfrac{\alpha}{2}cos\cfrac{\alpha}{2}}\)
\(=\cfrac{sin\alpha}{1+cos\alpha}=\cfrac{\cfrac{4}{5}}{1-\cfrac{3}{5}}=2\);
分析:这类题目一般需要先将\(f(x)\)转化为正弦型或者余弦型,再利用给定的条件分别求\(\omega\)和\(\phi\),由
\(f(x)=2Acos^2(\omega x+\phi)=A[cos2(\omega x+\phi)+1]-A=Acos(2\omega x+2\phi)\),
故其周期为\(T=\cfrac{2\pi}{2\omega}=\cfrac{\pi}{\omega}\),
又由题目可知\(\cfrac{T}{4}=\cfrac{\pi}{3}-\cfrac{\pi}{12}=\cfrac{\pi}{4}\),则\(T=\pi=\cfrac{\pi}{\omega}\),
故\(\omega=1\),则函数简化为\(f(x)=Acos(2x+2\phi)\),再利用直线\(x=\cfrac{\pi}{3}\)是函数\(f(x)\)图象上的一条对称轴,
故\(2\times \cfrac{\pi}{3}+2\phi=k\pi,(k\in Z)\),解得\(\phi=\cfrac{k\pi}{2}-\cfrac{\pi}{3}\),
令\(k=1\),则\(\phi=\cfrac{\pi}{6}\in (0,\cfrac{\pi}{2})\),满足题意,故\(f(x)=Acos(2x+2\phi)=Acos(2x+\cfrac{\pi}{3})\).
令\(2k\pi-\pi\leq 2x+\cfrac{\pi}{3}\leq 2k\pi(k\in Z)\),解得\(k\pi-\cfrac{2\pi}{3}\leq x \leq k\pi-\cfrac{\pi}{6}\),即单调递增区间为\(A.[k\pi-\cfrac{2\pi}{3} ,k\pi-\cfrac{\pi}{6}](k\in Z)\);
分析:切化弦得到,\(\cfrac{sin\alpha}{cos\alpha}=\cfrac{1+sin\beta}{cos\beta}\),
即\(sin\alpha cos\beta-cos\alpha sin\beta=cos\alpha\),即\(sin(\alpha-\beta)=cos\alpha\);
又由已知可得,\(-\cfrac{\pi}{2}<\alpha-\beta<-\cfrac{\pi}{2}\),
再结合\(sin(\alpha-\beta)=cos\alpha\),\(\alpha \in (0,\cfrac{\pi}{2})\),\(cos\alpha>0\),
故可将\(-\cfrac{\pi}{2}<\alpha-\beta<-\cfrac{\pi}{2}\)压缩为\(0<\alpha-\beta<-\cfrac{\pi}{2}\),,
这样\(sin(\alpha-\beta)=cos\alpha\);且\(\alpha,\alpha-\beta \in (0,\cfrac{\pi}{2})\),
故有\((\alpha-\beta)+\alpha=\cfrac{\pi}{2}\),即\(2\alpha-\beta=\cfrac{\pi}{2}\),选C.
分析:采用升幂降角公式,得到\(3sinx=1+1-2sin^2x\),
整理为\(2sin^2x+3sinx-2=0\),即\((sinx+2)(2sinx-1)=0\)
解得\(sinx=-2(舍去)\)或\(sinx=\cfrac{1}{2}\),
再由\(sinx=\cfrac{1}{2}\),\(x\in[0,2\pi]\),
采用图像可得,\(x=\cfrac{\pi}{6}\)或\(x=\cfrac{5\pi}{6}\)。
分析:(巧设比例因子)设\(tanA=k,tanB=2k,tanC=3k,(k>0)\),
则由\(tanA\times tanB\times tanC=tanA+tanB+tanC\)可知,\(6k=6k^3\),解得\(k=1\).则有\(tanA=1,tanB=2,tanC=3\),
再设比例因子,比如设\(sinB=2m,cosB=m,(m>0)\),由平方关系可得,\(5m^2=1,m=\cfrac{1}{\sqrt{5}}\),
故\(sinB=\cfrac{2}{\sqrt{5}},sinC=\cfrac{3}{\sqrt{10}}\),则\(\cfrac{AC}{AB}=\cfrac{sinB}{sinC}=\cfrac{\cfrac{2}{\sqrt{5}}}{\cfrac{3}{\sqrt{10}}}=\cfrac{2\sqrt{2}}{3}\).
【法1】:方程组法,由\(\left\{\begin{array}{l}{\cfrac{sin\alpha}{cos\alpha}=\cfrac{1}{2}}\\{sin^2\alpha+cos^2\alpha=1}\end{array}\right.\),
解得\(sin^2\alpha=\cfrac{1}{5}\),\(cos^2\alpha=\cfrac{4}{5}\),
代入得到\(sin^4\alpha-cos^4\alpha=-\cfrac{3}{5}\);
【法2】:齐次式法,\(sin^4\alpha-cos^4\alpha=(sin^2\alpha-cos^2\alpha)(sin^2\alpha+cos^2\alpha)=sin^2\alpha-cos^2\alpha\)
\(=-cos2\alpha=-\cfrac{cos^2\alpha-sin^2\alpha}{sin^2\alpha+cos^2\alpha}=\cfrac{1-tan^2\alpha}{1+tan^2\alpha}=-\cfrac{3}{5}\);
【法3】:由\(\cfrac{sin\alpha}{cos\alpha}=\cfrac{1}{2}\),引入比例因子,可设\(sin\alpha=k\),\(cos\alpha=2k(k\neq 0)\),
由\(k^2+(2k)^2=1\),可得\(k^2=\cfrac{1}{5}\),故\(k^4=\cfrac{1}{25}\),
则\(sin^4\alpha-cos^4\alpha=k^4-(2k)^4=-15k^4=-\cfrac{3}{5}\);
分析:\(sin^21^{\circ}+sin^289^{\circ}=1\),\(sin^22^{\circ}+sin^288^{\circ}=1\),\(\cdots\),\(sin^244^{\circ}+sin^246^{\circ}=1\),\(sin^245^{\circ}=\cfrac{1}{2}\),
故原式=\(44+\cfrac{1}{2}=44.5\)。
标签:download uri 思路 软件下载 变形 png 使用 百度网 适应
原文地址:https://www.cnblogs.com/wanghai0666/p/12289956.html