码迷,mamicode.com
首页 > 其他好文 > 详细

在线|二轮辅导[06][三角函数+解三角形02]

时间:2020-02-11 19:21:50      阅读:112      评论:0      收藏:0      [点我收藏+]

标签:download   uri   思路   软件下载   变形   png   使用   百度网   适应   

视频地址

百度云盘地址:待上传

使用方法:下载观看,能保证高清清晰度,针对百度网盘限速,请使用PanDownload软件下载,该软件的下载地址:https://www.lanzous.com/i8ua9na

思维导图

典例剖析

例1求值\(\cfrac{1+cos20^{\circ}}{2sin20^{\circ}}-sin10^{\circ}(\cfrac{1}{tan5^{\circ}}-tan5^{\circ})\)

分析:原式\(=\cfrac{2cos^210^{\circ}}{2\cdot 2sin10^{\circ}cos10^{\circ}}-sin10^{\circ}(\cfrac{cos5^{\circ}}{sin5^{\circ}}-\cfrac{sin5^{\circ}}{cos5^{\circ}})\)

\(=\cfrac{cos10^{\circ}}{2sin10^{\circ}}-sin10^{\circ}(\cfrac{cos^25^{\circ}-sin^25^{\circ}}{sin5^{\circ}cos5^{\circ}})\)

\(=\cfrac{cos10^{\circ}}{2sin10^{\circ}}-sin10^{\circ}\cfrac{2cos10^{\circ}}{2sin5^{\circ}cos5^{\circ}})\)

\(=\cfrac{cos10^{\circ}}{2sin10^{\circ}}-2cos10^{\circ}\)

\(==\cfrac{cos10^{\circ}}{2sin10^{\circ}}-\cfrac{2cos10^{\circ}\cdot 2sin10^{\circ}}{2sin10^{\circ}}\)

\(=\cfrac{cos10^{\circ}-2sin20^{\circ}}{2sin10^{\circ}}\)

\(=\cfrac{cos10^{\circ}-2sin(30^{\circ}-10^{\circ})}{2sin10^{\circ}}\)

\(=\cfrac{cos10^{\circ}-cos10^{\circ}+2\cdot \cfrac{\sqrt{3}}{2}sin10^{\circ}}{2sin10^{\circ}}\)

\(=\cfrac{\sqrt{3}}{2}\)

例2求值\(\cfrac{cos10^{\circ}-\sqrt{3}cos(-100^{\circ})}{\sqrt{1-sin10^{\circ}}}\)

分析:原式\(=\cfrac{cos10^{\circ}-\sqrt{3}cos(100^{\circ})}{\sqrt{1-sin10^{\circ}}}\)

\(=\cfrac{cos10^{\circ}+\sqrt{3}sin10^{\circ}}{\sqrt{1-sin10^{\circ}}}\)

\(=\cfrac{cos10^{\circ}+\sqrt{3}sin10^{\circ}}{\sqrt{(cos5^{\circ}-sin5^{\circ})^2}}\)

\(=\cfrac{cos10^{\circ}+\sqrt{3}sin10^{\circ}}{(cos5^{\circ}-sin5^{\circ})^2}\)

\(=\cfrac{2sin(10^{\circ}+30^{\circ})}{-\sqrt{2}sin(5^{\circ}-45^{\circ})}\)

\(=\cfrac{2sin40^{\circ}}{\sqrt{2}sin40^{\circ}}=\sqrt{2}\)

例3化简求值\(\cfrac{cos40^{\circ}}{cos25^{\circ}\cdot \sqrt{1-sin40^{\circ}}}\)

分析:原式\(=\cfrac{cos40^{\circ}}{cos25^{\circ}\cdot \sqrt{(sin20^{\circ}-cos20^{\circ})^2}}\)

\(=\cfrac{cos40^{\circ}}{cos25^{\circ}\cdot |sin20^{\circ}-cos20^{\circ}|}\)

\(=\cfrac{cos^220^{\circ}-sin^220^{\circ}}{cos25^{\circ}(cos20^{\circ}-sin20^{\circ})}\)

\(=\cfrac{cos20^{\circ}+sin20^{\circ}}{cos25^{\circ}}\)

\(=\cfrac{\sqrt{2}sin(20^{\circ}+45^{\circ})}{cos25^{\circ}}\)

\(=\cfrac{\sqrt{2}sin65^{\circ}}{cos25^{\circ}}=\sqrt{2}\).

例4化简求值\(\cfrac{\sqrt{3}tan12^{\circ}-3}{(4cos^212^{\circ}-2)sin12^{\circ}}\)

分析:原式=\(\cfrac{\sqrt{3}\cfrac{sin12^{\circ}}{cos12^{\circ}}-3\cfrac{cos12^{\circ}}{cos12^{\circ}}}{2(2cos^212^{\circ}-1)sin12^{\circ}}\)

\(=\cfrac{\sqrt{3}\cdot \cfrac{sin12^{\circ}-\sqrt{3}cos12^{\circ}}{cos12^{\circ}}}{2cos24^{\circ}sin12^{\circ}}\)

\(=\cfrac{\sqrt{3}\cdot 2sin(12^{\circ}-60^{\circ})}{2cos24^{\circ}sin12^{\circ}cos12^{\circ}}\)

\(=\cfrac{2\sqrt{3}sin(-48^{\circ})}{sin24^{\circ}cos24^{\circ}}=-4\sqrt{3}\)

练-1化简求值\(\cfrac{\sqrt{3}-tan12^{\circ}}{(2cos^212^{\circ}-1)sin12^{\circ}}=8\)

练-2化简求值\(sin50^{\circ}(1+\sqrt{3}tan10^{\circ})=1\)

例5函数\(f(x)=2cos(\omega x+\phi)(\omega\neq 0)\)对任意\(x\)都有\(f(\cfrac{\pi}{4}+x)=f(\cfrac{\pi}{4}-x)\)成立,则\(f(\cfrac{\pi}{4})\)的值为【】

$A、2或0$ $B、-2或2$ $C、0$ $D、-2或0$

分析:由任意\(x\)都有\(f(\cfrac{\pi}{4}+x)=f(\cfrac{\pi}{4}-x)\)成立,可知\(x=\cfrac{\pi}{4}\)为函数的一条对称轴,

而正弦型或余弦型函数在对称轴处必然会取到最值,故\(f(\cfrac{\pi}{4})=\pm 2\),选B。

解后反思:此题目如果不注意函数的性质,往往会想到求\(\omega\)\(\phi\),这样思路就跑偏了。

例6【2018云南玉溪一模】函数\(f(x)=\sqrt{3}sin2x+2cos^2x\)的一条对称轴为直线【】

$A、x=\cfrac{\pi}{12}$ $B、x=\cfrac{\pi}{6}$ $C、x=\cfrac{\pi}{3}$ $D、x=\cfrac{\pi}{2}$

分析:\(f(x)=2sin(2x+\cfrac{\pi}{6})+1\)

法1:比较繁琐,令\(2x+\cfrac{\pi}{6}=k\pi+\cfrac{\pi}{2}\)\(k\in Z\),则\(x=\cfrac{k\pi}{2}+\cfrac{\pi}{6}\)\(k\in Z\),即对称轴有无数条,

\(k=0\),得到其中的一条对称轴为\(x=\cfrac{\pi}{6}\),当\(k\)取其他的值时,都不能得到其他的选项,故选\(B\)

法2:比较简单,利用函数在对称轴处的函数值能取到最值,故只需验证即可,

比如,将\(x=\cfrac{\pi}{12}\)代入\(sin(2x+\cfrac{\pi}{6})\),即\(sin\cfrac{\pi}{3}\),并不能使得其取到最值\(\pm 1\),故舍去\(A\)

\(x=\cfrac{\pi}{6}\)代入\(sin(2x+\cfrac{\pi}{6})\),即\(sin\cfrac{\pi}{2}\),能使得其取到最值\(+1\),故\(B\)必然满足;用同样的方法可以验证其余的选项错误;

例7【2018江西赣州5月适应性考试】若函数\(f(x)=3cos(2x+\cfrac{\pi}{6})-a\)\([0,\cfrac{\pi}{2}]\)上有两个零点\(x_1\)\(x_2\),则\(x_1+x_2\)=【】

$A、\cfrac{\pi}{3}$ $B、\cfrac{2\pi}{3}$ $C、\cfrac{5\pi}{6}$ $D、2\pi$

分析:只需要考虑函数\(y=cos(2x+\cfrac{\pi}{6})\)的对称性即可,由\(2x+\cfrac{\pi}{6}=k\pi\)\(k\in Z\)

得到对称轴\(x=\cfrac{k\pi}{2}-\cfrac{\pi}{12}\),由题可知,对称轴必须在\([0,\cfrac{\pi}{2}]\)内,令\(k=1\),得到对称轴为\(x=\cfrac{5}{12}\)

又两个零点\(x_1\)\(x_2\)关于对称轴\(x=\cfrac{5}{12}\)对称,故\(x_1+x_2=\cfrac{5}{6}\)

例8【2019届高三理科数学三轮模拟试题】若函数\(f(x)=asinx+cosx\)(\(a\)为常数,\(a\in R\))的图像关于直线\(x=\cfrac{\pi}{6}\)对称,则函数\(g(x)=sinx+acosx\)的图像【】

$A、关于直线x=-\cfrac{\pi}{3}对称$ $B、关于直线x=\cfrac{\pi}{6}对称$ $C、关于点(\cfrac{\pi}{3},0)对称$ $D、关于点(\cfrac{5\pi}{6},0)对称$

分析:\(y=f(x)=\sqrt{a^2+1}sin(x+\phi)\),其中\(tan\phi=\cfrac{1}{a}\)

由函数\(f(x)=asinx+cosx\)的图像关于直线\(x=\cfrac{\pi}{6}\)对称,可知\(\phi=\cfrac{\pi}{3}\)

\(a=\cfrac{\sqrt{3}}{3}\),又\(g(x)=sinx+\cfrac{\sqrt{3}}{3}cosx=\cfrac{2\sqrt{3}}{3}sin(x+\cfrac{\pi}{6})\)

逐项验证,可知选\(D\)

例9【2018广东茂名一模】【有图情形】已知函数\(f(x)=Asin(\omega x+\phi)(A>0,\omega> 0,0<\phi<\pi)\),其导函数的图象\(f'(x)\)如图所示,则\(f(\cfrac{\pi}{2})\)=【】

$A、2\sqrt{3}$ $B、2$ $C、2\sqrt{2}$ $D、4$

技术图片

分析:由于\(f'(x)=\omega Acos(\omega x+\phi)\),由\(\cfrac{T}{4}=\cfrac{3\pi}{2}-\cfrac{\pi}{2}=\pi\),故\(T=4\pi\),故\(\omega=\cfrac{2\pi}{4\pi}=\cfrac{1}{2}\)

又由图可知,\(\omega A=\cfrac{1}{2}A=2\),故\(A=4\),又由图\(f'(\cfrac{\pi}{2})=0=2cos(\cfrac{1}{2}\times \cfrac{\pi}{2}+\phi)\),即\(\cfrac{\pi}{4}+\phi=k\pi+\cfrac{\pi}{2}\)\(k\in Z\),故\(\phi=k\pi+\cfrac{\pi}{4}\),令\(k=0\),即\(\phi=\cfrac{\pi}{4}\in (0,\pi)\)

故函数\(f(x)=4sin(\cfrac{1}{2}x+\cfrac{\pi}{4})\),则\(f(\cfrac{\pi}{2})=4\),故选\(D\)

例10【2019高三理科数学二轮资料用题】【有图情形】已知函数\(f(x)=Atan(\omega x+\phi)\),其中\(\omega >0\)\(|\phi|<\cfrac{\pi}{2}\)\(y=f(x)\)的部分图象如图,则\(f(\cfrac{\pi}{24})\)=__________.

技术图片

分析:由图可知,\(\cfrac{T}{2}=\cfrac{3\pi}{8}-\cfrac{\pi}{8}=\cfrac{\pi}{4}\),则\(T=\cfrac{\pi}{2}\),故\(\omega=\cfrac{\pi}{T}=2\)

又当\(x=\cfrac{3\pi}{8}\)时,\(2\times \cfrac{3\pi}{8}+\phi=k\pi\)\(k\in Z\),则\(\phi=k\pi-\cfrac{3\pi}{4}\)

\(k=1\),则\(\phi=\pi-\cfrac{3\pi}{4}=\cfrac{\pi}{4}\in (-\cfrac{\pi}{2},\cfrac{\pi}{2})\),又\(x=0\)时,\(y=1\)

\(Atan(2\times 0+\cfrac{\pi}{4})=1\),故\(A=1\),即\(f(x)=tan(2x+\cfrac{\pi}{4})\)

\(f(\cfrac{\pi}{24})=tan(2\times \cfrac{\pi}{24}+\cfrac{\pi}{4})=\sqrt{3}\)

例11【无图情形】【2018届湖南衡阳八中第二次月考】已知函数\(y=sin(ωx+φ)\) \((ω>0,0<φ<π)\)的最小正周期为\(π\),且函数图象关于点\((-\cfrac{3\pi}{8},0)\)对称,则该函数的解析式为________.

分析:由于函数\(y=sin(ωx+φ)\)的最小正周期为\(π\),故\(\omega=2\),又图象关于点\((-\cfrac{3\pi}{8},0)\)对称,

\(2\times (-\cfrac{3\pi}{8})+\phi=k\pi\),故\(\phi=k\pi+\cfrac{3\pi}{4}\)\(k\in Z\) ,

\(k=0\)时,\(\phi=\cfrac{3\pi}{4}\in (0,\pi)\),故解析式为\(y=sin(2x+\cfrac{3\pi}{4})\).

例12【三轮模拟考试理科用题】已知\(\alpha\)为第二象限角,\(sin(\alpha+\cfrac{\pi}{4})=\cfrac{\sqrt{2}}{10}\),则\(tan\cfrac{\alpha}{2}\)的值为多少?

法1:变形得到\(\cfrac{\sqrt{2}}{2}(sin\alpha+cos\alpha)=\cfrac{\sqrt{2}}{10}\)

解得\(sin\alpha+cos\alpha=\cfrac{1}{5}\),又因为\(\alpha\)为第二象限角,

再结合勾股数可得\(sin\alpha=\cfrac{4}{5},cos\alpha=-\cfrac{3}{5}\)

\(tan\alpha=-\cfrac{4}{3}\),又由八卦图法可知\(\cfrac{\alpha}{2}\)在第一、三象限,

\(tan\cfrac{\alpha}{2}>0\),再由\(tan\alpha=-\cfrac{4}{3}=\cfrac{2tan\cfrac{\alpha}{2}}{1-(tan\cfrac{\alpha}{2})^2}\)

解方程得到\(tan\cfrac{\alpha}{2}=2\)

法2:同上法,得到\(sin\alpha=\cfrac{4}{5},cos\alpha=-\cfrac{3}{5}\)

\(tan\cfrac{\alpha}{2}=\cfrac{sin\cfrac{\alpha}{2}}{cos\cfrac{\alpha}{2}}\)

\(=\cfrac{2sin\cfrac{\alpha}{2}cos\cfrac{\alpha}{2}}{2cos\cfrac{\alpha}{2}cos\cfrac{\alpha}{2}}\)

\(=\cfrac{sin\alpha}{1+cos\alpha}=\cfrac{\cfrac{4}{5}}{1-\cfrac{3}{5}}=2\)

例13(三轮模拟考试理科用题)已知\(f(x)=2Acos^2(\omega x+\phi)(A>0,\omega>0,0<\phi<\cfrac{\pi}{2})\),直线\(x=\cfrac{\pi}{3}\)和点\((\cfrac{\pi}{12},0)\)分别是函数\(f(x)\)图象上相邻的一条对称轴和一个对称中心,则函数\(f(x)\)的单调增区间为( ).

$A.[k\pi-\cfrac{2\pi}{3} ,k\pi-\cfrac{\pi}{6}](k\in Z)$
$B.[k\pi-\cfrac{\pi}{6} ,k\pi+\cfrac{\pi}{3}](k\in Z)$
$C.[k\pi-\cfrac{5\pi}{12} ,k\pi+\cfrac{\pi}{12}](k\in Z)$
$D.[k\pi+\cfrac{\pi}{12} ,k\pi+\cfrac{7\pi}{12}](k\in Z)$

分析:这类题目一般需要先将\(f(x)\)转化为正弦型或者余弦型,再利用给定的条件分别求\(\omega\)\(\phi\),由

\(f(x)=2Acos^2(\omega x+\phi)=A[cos2(\omega x+\phi)+1]-A=Acos(2\omega x+2\phi)\)

故其周期为\(T=\cfrac{2\pi}{2\omega}=\cfrac{\pi}{\omega}\)

又由题目可知\(\cfrac{T}{4}=\cfrac{\pi}{3}-\cfrac{\pi}{12}=\cfrac{\pi}{4}\),则\(T=\pi=\cfrac{\pi}{\omega}\)

\(\omega=1\),则函数简化为\(f(x)=Acos(2x+2\phi)\),再利用直线\(x=\cfrac{\pi}{3}\)是函数\(f(x)\)图象上的一条对称轴,

\(2\times \cfrac{\pi}{3}+2\phi=k\pi,(k\in Z)\),解得\(\phi=\cfrac{k\pi}{2}-\cfrac{\pi}{3}\)

\(k=1\),则\(\phi=\cfrac{\pi}{6}\in (0,\cfrac{\pi}{2})\),满足题意,故\(f(x)=Acos(2x+2\phi)=Acos(2x+\cfrac{\pi}{3})\).

\(2k\pi-\pi\leq 2x+\cfrac{\pi}{3}\leq 2k\pi(k\in Z)\),解得\(k\pi-\cfrac{2\pi}{3}\leq x \leq k\pi-\cfrac{\pi}{6}\),即单调递增区间为\(A.[k\pi-\cfrac{2\pi}{3} ,k\pi-\cfrac{\pi}{6}](k\in Z)\);

例14【2014\(\cdot\)新课标全国卷Ⅰ】设\(\alpha,\beta \in (0,\cfrac{\pi}{2})\),且\(tan\alpha=\cfrac{1+sin\beta}{cos\beta}\),则【】

$A.3\alpha-\beta=\cfrac{\pi}{2}$ $B.3\alpha+\beta=\cfrac{\pi}{2}$ $C.2\alpha-\beta=\cfrac{\pi}{2}$ $D.2\alpha+\beta=\cfrac{\pi}{2}$

分析:切化弦得到,\(\cfrac{sin\alpha}{cos\alpha}=\cfrac{1+sin\beta}{cos\beta}\)

\(sin\alpha cos\beta-cos\alpha sin\beta=cos\alpha\),即\(sin(\alpha-\beta)=cos\alpha\)

又由已知可得,\(-\cfrac{\pi}{2}<\alpha-\beta<-\cfrac{\pi}{2}\)

再结合\(sin(\alpha-\beta)=cos\alpha\)\(\alpha \in (0,\cfrac{\pi}{2})\)\(cos\alpha>0\)

故可将\(-\cfrac{\pi}{2}<\alpha-\beta<-\cfrac{\pi}{2}\)压缩为\(0<\alpha-\beta<-\cfrac{\pi}{2}\),,

这样\(sin(\alpha-\beta)=cos\alpha\);且\(\alpha,\alpha-\beta \in (0,\cfrac{\pi}{2})\)

故有\((\alpha-\beta)+\alpha=\cfrac{\pi}{2}\),即\(2\alpha-\beta=\cfrac{\pi}{2}\),选C.

例15【2016\(\cdot\)上海卷】【解三角方程】方程\(3sinx=1+cos2x\)在区间\([0,2\pi]\)上的解为_______________。

分析:采用升幂降角公式,得到\(3sinx=1+1-2sin^2x\)

整理为\(2sin^2x+3sinx-2=0\),即\((sinx+2)(2sinx-1)=0\)

解得\(sinx=-2(舍去)\)\(sinx=\cfrac{1}{2}\)

再由\(sinx=\cfrac{1}{2}\)\(x\in[0,2\pi]\)

采用图像可得,\(x=\cfrac{\pi}{6}\)\(x=\cfrac{5\pi}{6}\)

例16【连比形式,巧设比例因子】在\(\Delta ABC\)中,\(tanA:tanB:tanC=1:2:3\),求\(\cfrac{AC}{AB}\)的值;

分析:(巧设比例因子)设\(tanA=k,tanB=2k,tanC=3k,(k>0)\),

则由\(tanA\times tanB\times tanC=tanA+tanB+tanC\)可知,\(6k=6k^3\),解得\(k=1\).则有\(tanA=1,tanB=2,tanC=3\),

再设比例因子,比如设\(sinB=2m,cosB=m,(m>0)\),由平方关系可得,\(5m^2=1,m=\cfrac{1}{\sqrt{5}}\),

\(sinB=\cfrac{2}{\sqrt{5}},sinC=\cfrac{3}{\sqrt{10}}\),则\(\cfrac{AC}{AB}=\cfrac{sinB}{sinC}=\cfrac{\cfrac{2}{\sqrt{5}}}{\cfrac{3}{\sqrt{10}}}=\cfrac{2\sqrt{2}}{3}\).

例17已知\(tan\alpha=\cfrac{1}{2}\),求\(sin^4\alpha-cos^4\alpha\)的值。

【法1】:方程组法,由\(\left\{\begin{array}{l}{\cfrac{sin\alpha}{cos\alpha}=\cfrac{1}{2}}\\{sin^2\alpha+cos^2\alpha=1}\end{array}\right.\)

解得\(sin^2\alpha=\cfrac{1}{5}\)\(cos^2\alpha=\cfrac{4}{5}\)

代入得到\(sin^4\alpha-cos^4\alpha=-\cfrac{3}{5}\)

【法2】:齐次式法,\(sin^4\alpha-cos^4\alpha=(sin^2\alpha-cos^2\alpha)(sin^2\alpha+cos^2\alpha)=sin^2\alpha-cos^2\alpha\)

\(=-cos2\alpha=-\cfrac{cos^2\alpha-sin^2\alpha}{sin^2\alpha+cos^2\alpha}=\cfrac{1-tan^2\alpha}{1+tan^2\alpha}=-\cfrac{3}{5}\)

【法3】:由\(\cfrac{sin\alpha}{cos\alpha}=\cfrac{1}{2}\),引入比例因子,可设\(sin\alpha=k\)\(cos\alpha=2k(k\neq 0)\)

\(k^2+(2k)^2=1\),可得\(k^2=\cfrac{1}{5}\),故\(k^4=\cfrac{1}{25}\)

\(sin^4\alpha-cos^4\alpha=k^4-(2k)^4=-15k^4=-\cfrac{3}{5}\)

例18求值:\(sin^21^{\circ}+sin^22^{\circ}+sin^23^{\circ}+\cdots+sin^288^{\circ}+sin^289^{\circ}=\)

分析:\(sin^21^{\circ}+sin^289^{\circ}=1\)\(sin^22^{\circ}+sin^288^{\circ}=1\)\(\cdots\)\(sin^244^{\circ}+sin^246^{\circ}=1\)\(sin^245^{\circ}=\cfrac{1}{2}\)

故原式=\(44+\cfrac{1}{2}=44.5\)

在线|二轮辅导[06][三角函数+解三角形02]

标签:download   uri   思路   软件下载   变形   png   使用   百度网   适应   

原文地址:https://www.cnblogs.com/wanghai0666/p/12289956.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!