码迷,mamicode.com
首页 > 其他好文 > 详细

pytorch使用horovod多gpu训练

时间:2020-02-12 12:49:33      阅读:555      评论:0      收藏:0      [点我收藏+]

标签:default   sub   eva   defaults   backward   formatter   expand   enum   fine   

pytorch使用horovod多gpu训练

pytorch在Horovod上训练步骤分为以下几步:

import torch
import horovod.torch as hvd

# Initialize Horovod 初始化horovod
hvd.init()

# Pin GPU to be used to process local rank (one GPU per process) 分配到每个gpu上
torch.cuda.set_device(hvd.local_rank())

# Define dataset... 定义dataset
train_dataset = ...

# Partition dataset among workers using DistributedSampler  对dataset的采样器进行调整,使用torch.utils.data.distributed.DistributedSampler
train_sampler = torch.utils.data.distributed.DistributedSampler(
    train_dataset, num_replicas=hvd.size(), rank=hvd.rank())

train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=..., sampler=train_sampler)

# Build model...
model = ...
model.cuda()

optimizer = optim.SGD(model.parameters())

# Add Horovod Distributed Optimizer  使用Horovod的分布式优化器函数包裹在原先optimizer上
optimizer = hvd.DistributedOptimizer(optimizer, named_parameters=model.named_parameters())

# Broadcast parameters from rank 0 to all other processes.  参数广播到每个gpu上
hvd.broadcast_parameters(model.state_dict(), root_rank=0)

for epoch in range(100):
   for batch_idx, (data, target) in enumerate(train_loader):
       optimizer.zero_grad()
       output = model(data)
       loss = F.nll_loss(output, target)
       loss.backward()
       optimizer.step()
       if batch_idx % args.log_interval == 0:
           print(Train Epoch: {} [{}/{}]\tLoss: {}.format(
               epoch, batch_idx * len(data), len(train_sampler), loss.item()))

 

完整示例代码如下,在imagenet上采用resnet50进行训练

  1 from __future__ import print_function
  2 
  3 import torch
  4 import argparse
  5 import torch.backends.cudnn as cudnn
  6 import torch.nn.functional as F
  7 import torch.optim as optim
  8 import torch.utils.data.distributed
  9 from torchvision import datasets, transforms, models
 10 import horovod.torch as hvd
 11 import os
 12 import math
 13 from tqdm import tqdm
 14 from distutils.version import LooseVersion
 15 
 16 # Training settings
 17 parser = argparse.ArgumentParser(description=PyTorch ImageNet Example,
 18                                  formatter_class=argparse.ArgumentDefaultsHelpFormatter)
 19 parser.add_argument(--train-dir, default=os.path.expanduser(~/imagenet/train),
 20                     help=path to training data)
 21 parser.add_argument(--val-dir, default=os.path.expanduser(~/imagenet/validation),
 22                     help=path to validation data)
 23 parser.add_argument(--log-dir, default=./logs,
 24                     help=tensorboard log directory)
 25 parser.add_argument(--checkpoint-format, default=./checkpoint-{epoch}.pth.tar,
 26                     help=checkpoint file format)
 27 parser.add_argument(--fp16-allreduce, action=store_true, default=False,
 28                     help=use fp16 compression during allreduce)
 29 parser.add_argument(--batches-per-allreduce, type=int, default=1,
 30                     help=number of batches processed locally before 
 31                          executing allreduce across workers; it multiplies 
 32                          total batch size.)
 33 parser.add_argument(--use-adasum, action=store_true, default=False,
 34                     help=use adasum algorithm to do reduction)
 35 
 36 # Default settings from https://arxiv.org/abs/1706.02677.
 37 parser.add_argument(--batch-size, type=int, default=32,
 38                     help=input batch size for training)
 39 parser.add_argument(--val-batch-size, type=int, default=32,
 40                     help=input batch size for validation)
 41 parser.add_argument(--epochs, type=int, default=90,
 42                     help=number of epochs to train)
 43 parser.add_argument(--base-lr, type=float, default=0.0125,
 44                     help=learning rate for a single GPU)
 45 parser.add_argument(--warmup-epochs, type=float, default=5,
 46                     help=number of warmup epochs)
 47 parser.add_argument(--momentum, type=float, default=0.9,
 48                     help=SGD momentum)
 49 parser.add_argument(--wd, type=float, default=0.00005,
 50                     help=weight decay)
 51 
 52 parser.add_argument(--no-cuda, action=store_true, default=False,
 53                     help=disables CUDA training)
 54 parser.add_argument(--seed, type=int, default=42,
 55                     help=random seed)
 56 
 57 args = parser.parse_args()
 58 args.cuda = not args.no_cuda and torch.cuda.is_available()
 59 
 60 allreduce_batch_size = args.batch_size * args.batches_per_allreduce
 61 
 62 hvd.init()
 63 torch.manual_seed(args.seed)
 64 
 65 if args.cuda:
 66     # Horovod: pin GPU to local rank.
 67     torch.cuda.set_device(hvd.local_rank())
 68     torch.cuda.manual_seed(args.seed)
 69 
 70 cudnn.benchmark = True
 71 
 72 # If set > 0, will resume training from a given checkpoint.
 73 resume_from_epoch = 0
 74 for try_epoch in range(args.epochs, 0, -1):
 75     if os.path.exists(args.checkpoint_format.format(epoch=try_epoch)):
 76         resume_from_epoch = try_epoch
 77         break
 78 
 79 # Horovod: broadcast resume_from_epoch from rank 0 (which will have
 80 # checkpoints) to other ranks.
 81 resume_from_epoch = hvd.broadcast(torch.tensor(resume_from_epoch), root_rank=0,
 82                                   name=resume_from_epoch).item()
 83 
 84 # Horovod: print logs on the first worker.
 85 verbose = 1 if hvd.rank() == 0 else 0
 86 
 87 # Horovod: write TensorBoard logs on first worker.
 88 try:
 89     if LooseVersion(torch.__version__) >= LooseVersion(1.2.0):
 90         from torch.utils.tensorboard import SummaryWriter
 91     else:
 92         from tensorboardX import SummaryWriter
 93     log_writer = SummaryWriter(args.log_dir) if hvd.rank() == 0 else None
 94 except ImportError:
 95     log_writer = None
 96 
 97 # Horovod: limit # of CPU threads to be used per worker.
 98 torch.set_num_threads(4)
 99 
100 kwargs = {num_workers: 4, pin_memory: True} if args.cuda else {}
101 train_dataset = 102     datasets.ImageFolder(args.train_dir,
103                          transform=transforms.Compose([
104                              transforms.RandomResizedCrop(224),
105                              transforms.RandomHorizontalFlip(),
106                              transforms.ToTensor(),
107                              transforms.Normalize(mean=[0.485, 0.456, 0.406],
108                                                   std=[0.229, 0.224, 0.225])
109                          ]))
110 # Horovod: use DistributedSampler to partition data among workers. Manually specify
111 # `num_replicas=hvd.size()` and `rank=hvd.rank()`.
112 train_sampler = torch.utils.data.distributed.DistributedSampler(
113     train_dataset, num_replicas=hvd.size(), rank=hvd.rank())
114 train_loader = torch.utils.data.DataLoader(
115     train_dataset, batch_size=allreduce_batch_size,
116     sampler=train_sampler, **kwargs)
117 
118 val_dataset = 119     datasets.ImageFolder(args.val_dir,
120                          transform=transforms.Compose([
121                              transforms.Resize(256),
122                              transforms.CenterCrop(224),
123                              transforms.ToTensor(),
124                              transforms.Normalize(mean=[0.485, 0.456, 0.406],
125                                                   std=[0.229, 0.224, 0.225])
126                          ]))
127 val_sampler = torch.utils.data.distributed.DistributedSampler(
128     val_dataset, num_replicas=hvd.size(), rank=hvd.rank())
129 val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=args.val_batch_size,
130                                          sampler=val_sampler, **kwargs)
131 
132 
133 # Set up standard ResNet-50 model.
134 model = models.resnet50()
135 
136 # By default, Adasum doesn‘t need scaling up learning rate.
137 # For sum/average with gradient Accumulation: scale learning rate by batches_per_allreduce
138 lr_scaler = args.batches_per_allreduce * hvd.size() if not args.use_adasum else 1
139 
140 if args.cuda:
141     # Move model to GPU.
142     model.cuda()
143     # If using GPU Adasum allreduce, scale learning rate by local_size.
144     if args.use_adasum and hvd.nccl_built():
145         lr_scaler = args.batches_per_allreduce * hvd.local_size()
146 
147 # Horovod: scale learning rate by the number of GPUs.
148 optimizer = optim.SGD(model.parameters(),
149                       lr=(args.base_lr *
150                           lr_scaler),
151                       momentum=args.momentum, weight_decay=args.wd)
152 
153 # Horovod: (optional) compression algorithm.
154 compression = hvd.Compression.fp16 if args.fp16_allreduce else hvd.Compression.none
155 
156 # Horovod: wrap optimizer with DistributedOptimizer.
157 optimizer = hvd.DistributedOptimizer(
158     optimizer, named_parameters=model.named_parameters(),
159     compression=compression,
160     backward_passes_per_step=args.batches_per_allreduce,
161     op=hvd.Adasum if args.use_adasum else hvd.Average)
162 
163 # Restore from a previous checkpoint, if initial_epoch is specified.
164 # Horovod: restore on the first worker which will broadcast weights to other workers.
165 if resume_from_epoch > 0 and hvd.rank() == 0:
166     filepath = args.checkpoint_format.format(epoch=resume_from_epoch)
167     checkpoint = torch.load(filepath)
168     model.load_state_dict(checkpoint[model])
169     optimizer.load_state_dict(checkpoint[optimizer])
170 
171 # Horovod: broadcast parameters & optimizer state.
172 hvd.broadcast_parameters(model.state_dict(), root_rank=0)
173 hvd.broadcast_optimizer_state(optimizer, root_rank=0)
174 
175 def train(epoch):
176     model.train()
177     train_sampler.set_epoch(epoch)
178     train_loss = Metric(train_loss)
179     train_accuracy = Metric(train_accuracy)
180 
181     with tqdm(total=len(train_loader),
182               desc=Train Epoch     #{}.format(epoch + 1),
183               disable=not verbose) as t:
184         for batch_idx, (data, target) in enumerate(train_loader):
185             adjust_learning_rate(epoch, batch_idx)
186 
187             if args.cuda:
188                 data, target = data.cuda(), target.cuda()
189             optimizer.zero_grad()
190             # Split data into sub-batches of size batch_size
191             for i in range(0, len(data), args.batch_size):
192                 data_batch = data[i:i + args.batch_size]
193                 target_batch = target[i:i + args.batch_size]
194                 output = model(data_batch)
195                 train_accuracy.update(accuracy(output, target_batch))
196                 loss = F.cross_entropy(output, target_batch)
197                 train_loss.update(loss)
198                 # Average gradients among sub-batches
199                 loss.div_(math.ceil(float(len(data)) / args.batch_size))
200                 loss.backward()
201             # Gradient is applied across all ranks
202             optimizer.step()
203             t.set_postfix({loss: train_loss.avg.item(),
204                            accuracy: 100. * train_accuracy.avg.item()})
205             t.update(1)
206 
207     if log_writer:
208         log_writer.add_scalar(train/loss, train_loss.avg, epoch)
209         log_writer.add_scalar(train/accuracy, train_accuracy.avg, epoch)
210 
211 
212 def validate(epoch):
213     model.eval()
214     val_loss = Metric(val_loss)
215     val_accuracy = Metric(val_accuracy)
216 
217     with tqdm(total=len(val_loader),
218               desc=Validate Epoch  #{}.format(epoch + 1),
219               disable=not verbose) as t:
220         with torch.no_grad():
221             for data, target in val_loader:
222                 if args.cuda:
223                     data, target = data.cuda(), target.cuda()
224                 output = model(data)
225 
226                 val_loss.update(F.cross_entropy(output, target))
227                 val_accuracy.update(accuracy(output, target))
228                 t.set_postfix({loss: val_loss.avg.item(),
229                                accuracy: 100. * val_accuracy.avg.item()})
230                 t.update(1)
231 
232     if log_writer:
233         log_writer.add_scalar(val/loss, val_loss.avg, epoch)
234         log_writer.add_scalar(val/accuracy, val_accuracy.avg, epoch)
235 
236 
237 # Horovod: using `lr = base_lr * hvd.size()` from the very beginning leads to worse final
238 # accuracy. Scale the learning rate `lr = base_lr` ---> `lr = base_lr * hvd.size()` during
239 # the first five epochs. See https://arxiv.org/abs/1706.02677 for details.
240 # After the warmup reduce learning rate by 10 on the 30th, 60th and 80th epochs.
241 def adjust_learning_rate(epoch, batch_idx):
242     if epoch < args.warmup_epochs:
243         epoch += float(batch_idx + 1) / len(train_loader)
244         lr_adj = 1. / hvd.size() * (epoch * (hvd.size() - 1) / args.warmup_epochs + 1)
245     elif epoch < 30:
246         lr_adj = 1.
247     elif epoch < 60:
248         lr_adj = 1e-1
249     elif epoch < 80:
250         lr_adj = 1e-2
251     else:
252         lr_adj = 1e-3
253     for param_group in optimizer.param_groups:
254         param_group[lr] = args.base_lr * hvd.size() * args.batches_per_allreduce * lr_adj
255 
256 
257 def accuracy(output, target):
258     # get the index of the max log-probability
259     pred = output.max(1, keepdim=True)[1]
260     return pred.eq(target.view_as(pred)).cpu().float().mean()
261 
262 
263 def save_checkpoint(epoch):
264     if hvd.rank() == 0:
265         filepath = args.checkpoint_format.format(epoch=epoch + 1)
266         state = {
267             model: model.state_dict(),
268             optimizer: optimizer.state_dict(),
269         }
270         torch.save(state, filepath)
271 
272 
273 # Horovod: average metrics from distributed training.
274 class Metric(object):
275     def __init__(self, name):
276         self.name = name
277         self.sum = torch.tensor(0.)
278         self.n = torch.tensor(0.)
279 
280     def update(self, val):
281         self.sum += hvd.allreduce(val.detach().cpu(), name=self.name)
282         self.n += 1
283 
284     @property
285     def avg(self):
286         return self.sum / self.n
287 
288 
289 for epoch in range(resume_from_epoch, args.epochs):
290     train(epoch)
291     validate(epoch)
292     save_checkpoint(epoch)

 

pytorch使用horovod多gpu训练

标签:default   sub   eva   defaults   backward   formatter   expand   enum   fine   

原文地址:https://www.cnblogs.com/ywheunji/p/12298518.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!