标签:ram function return nbsp 指定 tensor history poc space
代码:
#集中不同的优化方式 import torch import torch.utils.data as Data import torch.nn.functional as F from torch.autograd import Variable import matplotlib.pyplot as plt #hyper parameters 超参数 LR = 0.01 BATCH_SIZE = 32 EPOCH = 12 if __name__ == ‘__main__‘: #数据 x = torch.unsqueeze(torch.linspace(-1, 1, 1000), dim=1) y = x.pow(2) + 0.1*torch.normal(torch.zeros(*x.size())) #分批处理数据 torch_dataset = Data.TensorDataset(x,y) loader = Data.DataLoader(dataset = torch_dataset, batch_size=BATCH_SIZE,shuffle=True, num_workers=2) #定义网络 class Net(torch.nn.Module): def __init__(self): super(Net, self).__init__() self.hidden = torch.nn.Linear(1, 20) self.predict = torch.nn.Linear(20,1) def forward(self, x): x = F.relu(self.hidden(x)) x = self.predict(x) return x #different nets net_SGD = Net() net_Momentum = Net() net_RMSprop = Net() net_Adam = Net() nets = [net_SGD, net_Momentum, net_RMSprop, net_Adam] #放到一个list中 #different optimizers #momentum,alpha,betas是指定参数 opt_SGD = torch.optim.SGD(net_SGD.parameters(), lr = LR) opt_Momentum = torch.optim.SGD(net_Momentum.parameters(), lr = LR, momentum=0.8) opt_RMSprop = torch.optim.RMSprop(net_RMSprop.parameters(), lr = LR, alpha=0.9) opt_Adam = torch.optim.Adam(net_Adam.parameters(), lr = LR, betas=(0.9, 0.99)) optimizers = [opt_SGD, opt_Momentum, opt_RMSprop, opt_Adam] loss_func = torch.nn.MSELoss() losses_history = [[], [], [], []] # record loss for epoch in range(EPOCH): print(‘epoch‘, epoch) for step, (batch_x, batch_y) in enumerate(loader): b_x = Variable(batch_x) b_y = Variable(batch_y) #它接受一系列可迭代的对象作为参数,将对象中对应的元素打包成一个个tuple(元组) for net, opt, l_his in zip(nets, optimizers, losses_history): output = net(b_x) loss = loss_func(output,b_y) opt.zero_grad() loss.backward() opt.step() #有点不懂,为什么不是losses_history.append l_his.append(loss.item()) #loss recorder labels = [‘SGD‘, ‘Momentum‘, ‘RMSprop‘, ‘Adam‘] for i,l_his in enumerate(losses_history): plt.plot(l_his,label=labels[i]) #plt.plot根据点画线 plt.legend(loc=‘best‘) #给图像加上图例 plt.xlabel(‘Steps‘) plt.ylabel(‘Loss‘) plt.ylim(0, 0.2) #设置y轴上的最小值和最大值 plt.show() optimizer = torch.optim.SGD()
标签:ram function return nbsp 指定 tensor history poc space
原文地址:https://www.cnblogs.com/loyolh/p/12299900.html