标签:个人 就是 nbsp span root turn mit max push
A Good In C
纯模拟题,用string数组读入数据,注意单词数量的判断
#include<bits/stdc++.h> using namespace std; const int maxn=1010; string a[27][8]; int main () { for (int i=1;i<=26;i++) { for (int j=1;j<=7;j++) cin>>a[i][j]; } string t; getchar (); getline (cin,t); string s[1050]; int top=0; for (int i=0;i<t.length();i++) { if (t[i]>=‘A‘&&t[i]<=‘Z‘) s[top]+=t[i]; else if (t[i-1]>=‘A‘&&t[i-1]<=‘Z‘) top++; } if (top!=0&&!(t[t.length()-1]>=‘A‘&&t[t.length()-1]<=‘Z‘)) top--; for (int k=0;k<=top;k++) { for (int j=1;j<=7;j++) { for (int i=0;i<s[k].length();i++) { if (i!=0) printf (" "); cout<<a[s[k][i]-‘A‘+1][j]; } cout<<endl; } //for (int j=1;j<=7;j++) if (k!=top) printf ("\n"); } //printf ("\n"); return 0; }
B Block Reversing
链表常规题,用结构体静态建立链表,有两个注意点:1、给出的结点里会有无关结点。2、链表里的元素个数能不能整除k要分开判断。
#include<bits/stdc++.h> using namespace std; const int maxn=100001; struct node { int address; int data; int next; }Node[maxn]; int main () { int head,N,K; scanf ("%d %d %d",&head,&N,&K); int address,data,next; for (int i=0;i<N;i++) { scanf ("%05d %d %05d",&address,&data,&next); Node[address].address=address; Node[address].data=data; Node[address].next=next; } vector<node> vi; while (head!=-1) { vi.push_back(Node[head]); head=Node[head].next; } vector<int> vp[100]; if (vi.size()%K!=0) { printf ("%05d %d ",vi[vi.size()/K*K].address,vi[vi.size()/K*K].data); for (int i=vi.size()/K*K+1;i<vi.size();i++) printf ("%05d\n%05d %d ",vi[i].address,vi[i].address,vi[i].data); for (int i=vi.size()/K;i>0;i--) { for (int j=(i-1)*K;j<i*K;j++) printf ("%05d\n%05d %d ",vi[j].address,vi[j].address,vi[j].data); } printf ("-1"); } else { printf ("%05d %d ",vi[vi.size()-K].address,vi[vi.size()-K].data); for (int i=vi.size()/K;i>0;i--) { int flag=0; if (i==vi.size()/K) flag=1; for (int j=(i-1)*K+flag;j<i*K;j++) printf ("%05d\n%05d %d ",vi[j].address,vi[j].address,vi[j].data); } printf ("-1"); } return 0; }
C Summit
个人认为全场最简单的一题,也是第一道ac的题目,就是图论,根据题意暴力做即可~
#include<bits/stdc++.h> using namespace std; const int maxn=1010; const int inf=1e9; int g[maxn][maxn]; int N,M,K,L,a[maxn]; void init () { for (int i=1;i<=N;i++) for (int j=1;j<=N;j++) g[i][j]=inf; } int main () { scanf ("%d %d",&N,&M); int u,v; init (); for (int i=0;i<M;i++) { scanf ("%d %d",&u,&v); g[u][v]=g[v][u]=1; } scanf ("%d",&K); for (int i=0;i<K;i++) { int flag1=1,flag2=0,hash1[maxn]={0}; scanf ("%d",&L); for (int j=0;j<L;j++) { scanf ("%d",&a[j]); hash1[a[j]]=1; } for (int j=0;j<L;j++) { for (int k=j+1;k<L;k++) { if (g[a[j]][a[k]]==inf) { flag1=0;break; } } if (flag1==0) break; } if (flag1==0) { printf ("Area %d needs help.\n",i+1); continue; } int u; for (int j=1;j<=N;j++) { if (hash1[j]==0) { int flag3=0; for (int k=0;k<L;k++) if (g[a[k]][j]==inf) flag3++; if (flag3==0) { u=j; flag2=1; break; } } if (flag2==1) break; } if (flag1==1&&flag2==1) { printf ("Area %d may invite more people, such as %d.\n",i+1,u); } else if (flag1==1&&flag2==0) { printf ("Area %d is OK.\n",i+1); } } return 0; }
D Cartesian Tree
一开始以为是堆的算法,写了很久,其实并不是。一颗树,结点数据符合小顶堆的规则,给出它的中序遍历,要求输出层序。解决方法是先找出给定序列里最小的点作为根结点,再以根节点为标志,找根节点左边和右边各自最小的结点,作为根节点的左右子树,递归处理。
#include<bits/stdc++.h> using namespace std; const int maxn=1010; struct node { int data; node * left; node * right; }; int a[maxn]; node * create (int inL,int inR,int inRoot) { if (inRoot==1e9) return NULL; node * root=new node; root->data=a[inRoot]; int inLeft=1e9,inRight=1e9; int min=1e9; for (int i=inL;i<inRoot;i++) { if (a[i]<min) { min=a[i]; inLeft=i; } } root->left=create (inL,inRoot-1,inLeft); min=1e9; for (int i=inRoot+1;i<=inR;i++) { if (a[i]<min) { min=a[i]; inRight=i; } } root->right=create (inRoot+1,inR,inRight); return root; } void bfs (node * root) { queue<node *> q; q.push(root); while (!q.empty()) { node * now=q.front(); q.pop(); if (now!=root) printf (" "); printf ("%d",now->data); if (now->left) q.push(now->left); if (now->right) q.push(now->right); } } int main () { int N; scanf ("%d",&N); for (int i=1;i<=N;i++) { scanf ("%d",&a[i]); } int min=1e9,inRoot=-1; for (int i=1;i<=N;i++) { if (a[i]<min) { min=a[i]; inRoot=i; } } //printf ("%d\n",inRoot); node * root=create (1,N,inRoot); bfs (root); return 0; }
标签:个人 就是 nbsp span root turn mit max push
原文地址:https://www.cnblogs.com/zhanglichen/p/12301737.html