标签:提示 system 配置方法 targe 设置 也有 检测 矩形 tpi
完整教程下载地址:http://www.armbbs.cn/forum.php?mod=viewthread&tid=86980
本章教程为大家讲解LTDC应用中最基本的汉字显示和2D图形显示功能实现。
51.1 初学者重要提示
51.2 LCD相关的基础支持
51.3 LCD硬件设计
51.4 LCD驱动设计
51.5 LCD板级支持包(bsp_ltdc_h7.c和bsp_tft_lcd.c)
51.6 LCD的驱动移植和使用
51.7 实验例程设计框架
51.8 实验例程说明(MDK)
51.9 实验例程说明(IAR)
51.10 总结
显示屏的结构有必要给大家普及下,这里我们通过如下三种类型的显示屏进行说明,基本已经涵盖我们常用的方式了。
首先RA8875是一个显示屏控制器,自带显存,它的作用就是让不支持RGB接口的MCU也可以使用RGB接口的大屏。这起到了一个桥接的作用,可以将RGB接口屏转换成8080总线接口、SPI接口或者I2C接口方式。这种情况下,甚至低速的51单片机都可以外接大屏了。另外像SSD1963也是同样的作用。
这种类型是把显示控制器和显示屏都集成好了,支持8080总线接口,有些还支持SPI或者I2C接口,而且显存也都集成了,不过主要是驱动一些小屏。像ili9341,ili9326,SPFD5420等也是一样的。此外还要注意,部分这种类型显示屏也是支持RGB接口的,像ST官方的STM32F429探索板外接的ili9431就是用的RGB接口。
这个是我们本章节要讲解的,STM32H7是自带LCD控制器的,再配合SDRAM作为显示屏的显存,整体作用跟RA8875是一样的,可以直接外接RGB接口的屏了。
有了这些认识后,对于裸屏还有些知识点需要了解。首先,裸屏本身不是什么控制芯片都没有,其构成也是比较复杂的,有兴趣了解的话,可以搜索关键字“TFT结构”进行学习。其次,TFT裸屏中主要的两个IC是Gate Driver IC和Source Driver IC,这两个IC的引脚都超级多,基本都是几百个引脚。最后,不管使用的哪种裸屏,一般都有规格书,会给出时序参数,这个在配置STM32H7的LTDC时要用到,如果规格书没有直接给出时序参数,则会给出使用的Driver IC型号,用户可以搜索此Driver IC的手册,在手册中会给出。
为了让大家有个感性认识,我们来看一看TFT裸屏的实际效果,下面是SPDF5420显示屏,400*240分辨率:
下面是TFT裸屏,480*272分辨率:
下面是TFT裸屏,800*480分辨率:
有了TFT裸屏后还要配套电阻触摸板或者电容触摸板才可以获取触摸信息。触摸板是贴到TFT屏上面的,然后再通过电阻触摸芯片就可以获取电阻触摸板的信息,通过电容触摸芯片采集电容触摸板的信息。教程配套开发板的显示屏使用了三种触摸IC,电阻触摸IC是STMPE811,电容触摸IC是GT811和FT5X06。其中,电阻触摸和电容触摸两者的区别是初学者务必要知道的:
下面是四线电阻触摸板的效果:
下面是电容触摸板的效果:
了解了这些知识,基本已经够我们本章节使用了,更多电阻触摸和电容触摸的相关知识可以看这个文档,讲解比较全面:http://bbs.armfly.com/read.php?tid=14898 。
下面是RGB888硬件接口的原理图,STM32-V7开发板制作了三个硬件接口。
了解了原理图后,再来看下实际的接口效果:
通过上面的原理图,我们要了解以下几个问题:
下面将程序设计中的相关问题逐一为大家做个说明。
设计LTDC驱动前,要先保证显存可以正常使用,V7开发板用的外部SDRAM作为显存。所以一定要保证SDRAM大批量读写数据时是正常的,SDRAM的测试可以自己专门做一个工程测试下。对于SDRAM的驱动实现,可以学习本教程第49章。不管你使用的是镁光的,海力士的,三星的,ISSI的或者华邦的,实现方法基本都是一样的。
V7开发板使用ISSI的32位带宽、32MB的SDRAM,如果想最大限度的发挥STM32H7驱动SDRAM的性能,强烈建议使用32位带宽的SDRAM,或者两个16位SDRAM组成32位带宽的SDRAM也是可以的。那SDRAM主要起到什么作用呢?作用有二:
STM32H7的LTDC外接RGB接口屏是没有显存的,所以需要SDRAM用作显存。如果用户选择STM32H7 LTDC的颜色格式是32位色ARGB8888,那么所需要显存大小(单位字节)是:显示屏宽 * 显示屏高 * (32/8), 其中32/8是表示这种颜色格式的一个像素点需要4个字节来表示。又比如配置颜色格式是16位色的RGB565,那么需要的显存大小是:显示屏宽 * 显示屏高 * (16/8),其中16/8是表示这种颜色格式的一个像素点需要2个字节来表示。其它的颜色格式,依此类推。
如果想要实现炫酷效果,GUI是极其消耗动态内存的,所以用户可以将SDRAM除了用于显存以外的所有内存全部用作GUI动态内存。
如果SDRAM的驱动测试已经没有问题了,就可以将其添加到工程里面了,V7使用的SDRAM驱动文件是bsp_fmc_sdram.c。图层1占用2MB,图层2占用2MB,最后28MB可做其它使用。也许会有初学者会问,每个图层分配2MB是不是有些多了?实际上不多的,因为我们要让不同的颜色格式都通用,这里分配2MB的话,教程实例使用很方便。大家实际项目中的使用可以配置成实际大小。具体的配置如下,详情见bsp_fmc_sdram.h文件:
#define EXT_SDRAM_ADDR ((uint32_t)0xC0000000) #define EXT_SDRAM_SIZE (32 * 1024 * 1024) /* LCD显存,第1页, 分配2M字节 */ #define SDRAM_LCD_BUF1 EXT_SDRAM_ADDR /* LCD显存,第2页, 分配2M字节 */ #define SDRAM_LCD_BUF2 (EXT_SDRAM_ADDR + SDRAM_LCD_SIZE) #define SDRAM_LCD_SIZE (2 * 1024 * 1024) /* 每层2M */ #define SDRAM_LCD_LAYER 2 /* 2层 */ /* 剩下的28M字节,提供给应用程序使用 */ #define SDRAM_APP_BUF (EXT_SDRAM_ADDR + SDRAM_LCD_SIZE * SDRAM_LCD_LAYER) #define SDRAM_APP_SIZE (EXT_SDRAM_SIZE - SDRAM_LCD_SIZE * SDRAM_LCD_LAYER)
由于用户要刷新数据到SDRAM,而且LTDC也要从SDRAM读取数据,这就属于多总线访问SDRAM,此时就要注意Cache配置。为了使用方便起见,直接将SDRAM配置为WT模式,这样用户刷新的数据就可以立即写入到SDRAM,从而不影响LTDC刷新。
本章第3小节用到了哪些引脚,这些引脚全部要做初始化,初始化时别忘了初始化引脚对应的时钟:
static void LCDH7_ConfigLTDC(void) { /* 配置LCD相关的GPIO */ { /* GPIOs Configuration */ /* +------------------------+-----------------------+----------------------------+ + LCD pins assignment + +------------------------+-----------------------+----------------------------+ | LCDH7_TFT R0 <-> PI.15 | LCDH7_TFT G0 <-> PJ.07 | LCDH7_TFT B0 <-> PJ.12 | | LCDH7_TFT R1 <-> PJ.00 | LCDH7_TFT G1 <-> PJ.08 | LCDH7_TFT B1 <-> PJ.13 | | LCDH7_TFT R2 <-> PJ.01 | LCDH7_TFT G2 <-> PJ.09 | LCDH7_TFT B2 <-> PJ.14 | | LCDH7_TFT R3 <-> PJ.02 | LCDH7_TFT G3 <-> PJ.10 | LCDH7_TFT B3 <-> PJ.15 | | LCDH7_TFT R4 <-> PJ.03 | LCDH7_TFT G4 <-> PJ.11 | LCDH7_TFT B4 <-> PK.03 | | LCDH7_TFT R5 <-> PJ.04 | LCDH7_TFT G5 <-> PK.00 | LCDH7_TFT B5 <-> PK.04 | | LCDH7_TFT R6 <-> PJ.05 | LCDH7_TFT G6 <-> PK.01 | LCDH7_TFT B6 <-> PK.05 | | LCDH7_TFT R7 <-> PJ.06 | LCDH7_TFT G7 <-> PK.02 | LCDH7_TFT B7 <-> PK.06 | ------------------------------------------------------------------------------- | LCDH7_TFT HSYNC <-> PI.12 | LCDTFT VSYNC <-> PI.13 | | LCDH7_TFT CLK <-> PI.14 | LCDH7_TFT DE <-> PK.07 | ----------------------------------------------------- */ GPIO_InitTypeDef GPIO_Init_Structure; /*##-1- Enable peripherals and GPIO Clocks #################################*/ /* 使能LTDC时钟 */ __HAL_RCC_LTDC_CLK_ENABLE(); /* 使能GPIO时钟 */ __HAL_RCC_GPIOI_CLK_ENABLE(); __HAL_RCC_GPIOJ_CLK_ENABLE(); __HAL_RCC_GPIOK_CLK_ENABLE(); /* GPIOI 配置 */ GPIO_Init_Structure.Pin = GPIO_PIN_12 | GPIO_PIN_13 | GPIO_PIN_14 | GPIO_PIN_15; GPIO_Init_Structure.Mode = GPIO_MODE_AF_PP; GPIO_Init_Structure.Pull = GPIO_NOPULL; GPIO_Init_Structure.Speed = GPIO_SPEED_FREQ_HIGH; GPIO_Init_Structure.Alternate = GPIO_AF14_LTDC; HAL_GPIO_Init(GPIOI, &GPIO_Init_Structure); /* GPIOJ 配置 */ GPIO_Init_Structure.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2 | GPIO_PIN_3 | GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 | GPIO_PIN_7 | GPIO_PIN_8 | GPIO_PIN_9 | GPIO_PIN_10 | GPIO_PIN_11 | GPIO_PIN_12 | GPIO_PIN_13 | GPIO_PIN_14 | GPIO_PIN_15; GPIO_Init_Structure.Mode = GPIO_MODE_AF_PP; GPIO_Init_Structure.Pull = GPIO_NOPULL; GPIO_Init_Structure.Speed = GPIO_SPEED_FREQ_HIGH; GPIO_Init_Structure.Alternate = GPIO_AF14_LTDC; HAL_GPIO_Init(GPIOJ, &GPIO_Init_Structure); /* GPIOK 配置 */ GPIO_Init_Structure.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2 | GPIO_PIN_3 | GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 | GPIO_PIN_7; GPIO_Init_Structure.Mode = GPIO_MODE_AF_PP; GPIO_Init_Structure.Pull = GPIO_NOPULL; GPIO_Init_Structure.Speed = GPIO_SPEED_FREQ_HIGH; GPIO_Init_Structure.Alternate = GPIO_AF14_LTDC; HAL_GPIO_Init(GPIOK, &GPIO_Init_Structure); } /* 其它省略未写 */ }
LTDC时序配置主要分三步就可以完成:
下面将这三点分别做个说明:
这里以V7开发板7寸RGB屏使用的source driver ic OTA7001为例进行说明(手册下载地址:http://www.armbbs.cn/forum.php?mod=viewthread&tid=18528)。
这几项配置要看OTA7001手册上面的时序图,对于DE模式,行同步和场同步的极性配置为高或者为低均可。因为我们这里使用的就是DE模式,所以主要配置DE的极性。这里要特别注意一个小问题,看时序图是DE高电平时数据有效,但是配置的时候要设置为低电平才可以。
下面的是V7开发板配套的7寸裸屏使用的source driver ic OTA7001的时序图:
实际配置STM32H7的工程时,将DE配置为低有效才是上面截图的效果,这个问题的确是有些奇葩了。
大家使用的时候也特别注意。
/* 配置信号极性 */ hltdc_F.Init.HSPolarity = LTDC_HSPOLARITY_AL; /* HSYNC 低电平有效 */ hltdc_F.Init.VSPolarity = LTDC_VSPOLARITY_AL; /* VSYNC 低电平有效 */ hltdc_F.Init.DEPolarity = LTDC_DEPOLARITY_AL; /* DE 低电平有效 */ hltdc_F.Init.PCPolarity = LTDC_PCPOLARITY_IPC; /* Pixel Clock 或者Dot Clock极性 */
ps:注意LTDC_PCPOLARITY_IPC和LTDC_PCPOLARITY_IIPC两种极性,选择不当会有一些问题。比如下面这个现象,底边会有黑的。
下面是用示波器实际测量的波形效果,黄色的波形是DE信号,另一个是行同步信号Hsync:
将波形放缩后:
在OTA7001手册上面给出了支持的时钟范围:
由于USB和LTDC都是用的PLL3产生时钟,为了方便起见,直接将产生LTDC时钟的PLL3R设置为24MHz(PLL3Q输出的48MHz时钟供USB使用)。
首先,输入时钟 PLL3_VCO Input = HSE_VALUE/PLL3M = 25MHz/5 = 5MHz 输出时钟 PLL3_VCO Output = PLL3_VCO Input * PLL3N = 5MHz * 48 = 240MHz PLLLCDCLK = PLL3_VCO Output/PLL3R = 240 / 10 = 24MHz 最后,LTDC 时钟LTDC clock frequency = PLLLCDCLK = 24MHz
这里再额外补充点知识,LCD_CLK=24MHz时
刷新率 = 24MHz /((Width + HSYNC_W + HBP + HFP)*(Height + VSYNC_W + VBP + VFP))
= 24000000/((800 + 96 + 10 + 10)*(480 + 2 + 10 + 10))
= 24000000/(916*502)
= 52Hz
根据需要可以加大,100Hz刷新率完全没问题,设置PeriphClkInitStruct.PLL3.PLL3N = 100即可,此时的LTDC时钟是50MHz
刷新率 = 50MHz /((Width + HSYNC_W+ HBP+ HFP )*(Height + VSYNC_W +VBP +VFP ))
= 5000000/(916*502)
= 108.7Hz
时序参数的配置也比较容易,其实就是先看STM32H7参考手册上面的公式说明,说是公式,其实就是简单的加减法。然后将OTA7001的参数代到这个公式就可以了。又因为手册一般都是给出了参数的最小值,典型值和最大值,大家可以根据实际情况做简单的调整即可。需要用到的参数:
uint16_t Width, Height, HSYNC_W, VSYNC_W, HBP, HFP, VBP, VFP;
Horizontal Synchronization (Hsync) 对应变量HSYNC_W
Horizontal Back Porch (HBP) 对应变量HBP
Active Width 对应变量Width
Horizontal Front Porch (HFP) 对应变量HFP
Vertical Synchronization (Vsync) 对应变量VSYNC_W
Vertical Back Porch (VBP) 对应变量VBP
Active Heigh 对应变量Heigh
Vertical Front Porch (VFP) 对应变量VFP
STM32H7参考手册上面的公式如下:
********************************************************************************************************* * LCD_TFT 同步时序配置(整理自官方做的一个截图,言简意赅): * ---------------------------------------------------------------------------- * * Total Width * <---------------------------------------------------> * Hsync width HBP Active Width HFP * <---><--><--------------------------------------><--> * ____ ____|_______________________________________|____ * |___| | | | * | | | * __| | | | * /|\ /|\ | | | | * | VSYNC| | | | | * |Width\|/ |__ | | | * | /|\ | | | | * | VBP | | | | | * | \|/_____|_________|_______________________________________| | * | /|\ | | / / / / / / / / / / / / / / / / / / / | | * | | | |/ / / / / / / / / / / / / / / / / / / /| | * Total | | | |/ / / / / / / / / / / / / / / / / / / /| | * Heigh | | | |/ / / / / / / / / / / / / / / / / / / /| | * |Active| | |/ / / / / / / / / / / / / / / / / / / /| | * |Heigh | | |/ / / / / / Active Display Area / / / /| | * | | | |/ / / / / / / / / / / / / / / / / / / /| | * | | | |/ / / / / / / / / / / / / / / / / / / /| | * | | | |/ / / / / / / / / / / / / / / / / / / /| | * | | | |/ / / / / / / / / / / / / / / / / / / /| | * | | | |/ / / / / / / / / / / / / / / / / / / /| | * | \|/_____|_________|_______________________________________| | * | /|\ | | * | VFP | | | * \|/ \|/_____|______________________________________________________| * * * 每个LCD设备都有自己的同步时序值: * Horizontal Synchronization (Hsync) * Horizontal Back Porch (HBP) * Active Width * Horizontal Front Porch (HFP) * * Vertical Synchronization (Vsync) * Vertical Back Porch (VBP) * Active Heigh * Vertical Front Porch (VFP) * * LCD_TFT 窗口水平和垂直的起始以及结束位置 : * ---------------------------------------------------------------- * * HorizontalStart = (Offset_X + Hsync + HBP); * HorizontalStop = (Offset_X + Hsync + HBP + Window_Width - 1); * VarticalStart = (Offset_Y + Vsync + VBP); * VerticalStop = (Offset_Y + Vsync + VBP + Window_Heigh - 1); * *********************************************************************************************************
OTA7001手册中已经给出了我们需要的数值:
uint16_t Width, Height, HSYNC_W, HBP, HFP, VSYNC_W, VBP, VFP。
参数设置好了,直接代入公式并与行同步,场同步和DE一起初始化:
/* 时序配置 */ hltdc_F.Init.HorizontalSync = (HSYNC_W - 1); hltdc_F.Init.VerticalSync = (VSYNC_W - 1); hltdc_F.Init.AccumulatedHBP = (HSYNC_W + HBP - 1); hltdc_F.Init.AccumulatedVBP = (VSYNC_W + VBP - 1); hltdc_F.Init.AccumulatedActiveH = (Height + VSYNC_W + VBP - 1); hltdc_F.Init.AccumulatedActiveW = (Width + HSYNC_W + HBP - 1); hltdc_F.Init.TotalHeigh = (Height + VSYNC_W + VBP + VFP - 1); hltdc_F.Init.TotalWidth = (Width + HSYNC_W + HBP + HFP - 1);
至此,时序配置工作就完成了。
这里特别注意,当前程序中实际使用的参数与本小节的参数略有区别。由于这些参数都有较大的容错范围,所以很多参数都可以正常使用。
下面说一个最重要的问题,配置好时序了,怎么检查自己的配置是否成功了?用户仅需在函数LCDH7_ConfigLTDC里面的如下代码后面加上两个函数:
/* 配置LTDC */ if (HAL_LTDC_Init(&hltdc_F) != HAL_OK) { /* 初始化错误 */ Error_Handler(__FILE__, __LINE__); } /* 下面是添加的 */ LCD_SetBackLight(BRIGHT_DEFAULT); while(1);
加上这两行代码后,再将背景层设置为一个合适的颜色,建议设置成红色,方便观察:
/* 配置背景层颜色 */ hltdc_F.Init.Backcolor.Blue = 0; hltdc_F.Init.Backcolor.Green = 0; hltdc_F.Init.Backcolor.Red = 255;
如果背景层可以正常显示红色,说明引脚和时序配置都是没有问题的。如果不成功要从以下几个方面着手检查:
LTDC的图层配置就比较好理解了,下面是完整的驱动代码:
1. /* 2. ****************************************************************************************************** 3. * 函 数 名: LCDH7_ConfigLTDC 4. * 功能说明: 配置LTDC 5. * 形 参: 无 6. * 返 回 值: 无 7. ****************************************************************************************************** 8. */ 9. static void LCDH7_ConfigLTDC(void) 10. { 11. /* GPIO初始化部分省略未写 */ 12. 13. /*##-2- LTDC初始化 #############################################################*/ 14. { 15. LTDC_LayerCfgTypeDef pLayerCfg; 16. uint16_t Width, Height, HSYNC_W, HBP, HFP, VSYNC_W, VBP, VFP; 17. RCC_PeriphCLKInitTypeDef PeriphClkInitStruct; 18. 19. /* 支持6种面板 */ 20. switch (g_LcdType) 21. { 22. case LCD_35_480X320: /* 3.5寸 480 * 320 */ 23. Width = 480; 24. Height = 272; 25. HSYNC_W = 10; 26. HBP = 20; 27. HFP = 20; 28. VSYNC_W = 20; 29. VBP = 20; 30. VFP = 20; 31. break; 32. 33. case LCD_43_480X272: /* 4.3寸 480 * 272 */ 34. Width = 480; 35. Height = 272; 36. 37. HSYNC_W = 40; 38. HBP = 2; 39. HFP = 2; 40. VSYNC_W = 9; 41. VBP = 2; 42. VFP = 2; 43. 44. /* LCD 时钟配置 */ 45. /* PLL3_VCO Input = HSE_VALUE/PLL3M = 25MHz/5 = 5MHz */ 46. /* PLL3_VCO Output = PLL3_VCO Input * PLL3N = 5MHz * 48 = 240MHz */ 47. /* PLLLCDCLK = PLL3_VCO Output/PLL3R = 240 / 10 = 24MHz */ 48. /* LTDC clock frequency = PLLLCDCLK = 24MHz */ 49. /* 50. 刷新率 = 24MHz /((Width + HSYNC_W + HBP + HFP)*(Height + VSYNC_W + VBP + VFP)) 51. = 24000000/((480 + 40 + 2 + 2)*(272 + 9 + 2 + 2)) 52. = 24000000/(524*285) 53. = 160Hz 54. 55. 当前这个配置方便用户使用PLL3Q输出的48MHz时钟供USB使用。 56. */ 57. PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_LTDC; 58. PeriphClkInitStruct.PLL3.PLL3M = 5; 59. PeriphClkInitStruct.PLL3.PLL3N = 48; 60. PeriphClkInitStruct.PLL3.PLL3P = 2; 61. PeriphClkInitStruct.PLL3.PLL3Q = 5; 62. PeriphClkInitStruct.PLL3.PLL3R = 10; 63. HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct); 64. break; 65. 66. case LCD_50_480X272: /* 5.0寸 480 * 272 */ 67. Width = 480; 68. Height = 272; 69. 70. HSYNC_W = 40; 71. HBP = 2; 72. HFP = 2; 73. VSYNC_W = 9; 74. VBP = 2; 75. VFP = 2; 76. break; 77. 78. case LCD_50_800X480: /* 5.0寸 800 * 480 */ 79. case LCD_70_800X480: /* 7.0寸 800 * 480 */ 80. Width = 800; 81. Height = 480; 82. 83. HSYNC_W = 96; 84. HBP = 10; 85. HFP = 10; 86. VSYNC_W = 2; 87. VBP = 10; 88. VFP = 10; 89. 90. /* LCD 时钟配置 */ 91. /* PLL3_VCO Input = HSE_VALUE/PLL3M = 25MHz/5 = 5MHz */ 92. /* PLL3_VCO Output = PLL3_VCO Input * PLL3N = 5MHz * 48 = 240MHz */ 93. /* PLLLCDCLK = PLL3_VCO Output/PLL3R = 240 / 10 = 24MHz */ 94. /* LTDC clock frequency = PLLLCDCLK = 24MHz */ 95. /* 96. 刷新率 = 24MHz /((Width + HSYNC_W + HBP + HFP)*(Height + VSYNC_W + VBP + VFP)) 97. = 24000000/((800 + 96 + 10 + 10)*(480 + 2 + 10 + 10)) 98. = 24000000/(916*502) 99. = 52Hz 100. 101. 根据需要可以加大,100Hz刷新率完全没问题,设置PeriphClkInitStruct.PLL3.PLL3N = 100即可 102. 此时的LTDC时钟是50MHz 103. 刷新率 = 50MHz /((Width + HSYNC_W + HBP + HFP )*(Height + VSYNC_W + VBP +VFP )) 104. = 5000000/(916*502) 105. = 108.7Hz 106. 107. 当前这个配置方便用户使用PLL3Q输出的48MHz时钟供USB使用。 108. */ 109. PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_LTDC; 110. PeriphClkInitStruct.PLL3.PLL3M = 5; 111. PeriphClkInitStruct.PLL3.PLL3N = 48; 112. PeriphClkInitStruct.PLL3.PLL3P = 2; 113. PeriphClkInitStruct.PLL3.PLL3Q = 5; 114. PeriphClkInitStruct.PLL3.PLL3R = 10; 115. HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct); 116. break; 117. 118. case LCD_70_1024X600: /* 7.0寸 1024 * 600 */ 119. /* 实测像素时钟 = 53.7M */ 120. Width = 1024; 121. Height = 600; 122. 123. HSYNC_W = 2; 124. HBP = 157; 125. HFP = 160; 126. VSYNC_W = 2; 127. VBP = 20; 128. VFP = 12; 129. 130. PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_LTDC; 131. PeriphClkInitStruct.PLL3.PLL3M = 5; 132. PeriphClkInitStruct.PLL3.PLL3N = 48; 133. PeriphClkInitStruct.PLL3.PLL3P = 2; 134. PeriphClkInitStruct.PLL3.PLL3Q = 5; 135. PeriphClkInitStruct.PLL3.PLL3R = 10; 136. HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct); 137. break; 138. 139. default: 140. Width = 800; 141. Height = 480; 142. 143. HSYNC_W = 80; 144. HBP = 10; 145. HFP = 10; 146. VSYNC_W = 10; 147. VBP = 10; 148. VFP = 10; 149. 150. /* LCD 时钟配置 */ 151. /* PLL3_VCO Input = HSE_VALUE/PLL3M = 25MHz/5 = 5MHz */ 152. /* PLL3_VCO Output = PLL3_VCO Input * PLL3N = 5MHz * 48 = 240MHz */ 153. /* PLLLCDCLK = PLL3_VCO Output/PLL3R = 240 / 10 = 24MHz */ 154. /* LTDC clock frequency = PLLLCDCLK = 24MHz */ 155. /* 156. 刷新率 = 24MHz /((Width + HSYNC_W + HBP + HFP)*(Height + VSYNC_W + VBP + VFP)) 157. = 24000000/((800 + 96 + 10 + 10)*(480 + 2 + 10 + 10)) 158. = 24000000/(916*502) 159. = 52Hz 160. 161. 根据需要可以加大,100Hz刷新率完全没问题,设置PeriphClkInitStruct.PLL3.PLL3N = 100即可 162. 此时的LTDC时钟是50MHz 163. 刷新率 = 50MHz /((Width + HSYNC_W + HBP + HFP )*(Height + VSYNC_W + VBP +VFP )) 164. = 5000000/(916*502) 165. = 108.7Hz 166. 167. 当前这个配置方便用户使用PLL3Q输出的48MHz时钟供USB使用。 168. */ 169. PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_LTDC; 170. PeriphClkInitStruct.PLL3.PLL3M = 5; 171. PeriphClkInitStruct.PLL3.PLL3N = 48; 172. PeriphClkInitStruct.PLL3.PLL3P = 2; 173. PeriphClkInitStruct.PLL3.PLL3Q = 5; 174. PeriphClkInitStruct.PLL3.PLL3R = 10; 175. HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct); 176. break; 177. } 178. 179. g_LcdHeight = Height; 180. g_LcdWidth = Width; 181. 182. /* 配置信号极性 */ 183. hltdc_F.Init.HSPolarity = LTDC_HSPOLARITY_AL; /* HSYNC 低电平有效 */ 184. hltdc_F.Init.VSPolarity = LTDC_VSPOLARITY_AL; /* VSYNC 低电平有效 */ 185. hltdc_F.Init.DEPolarity = LTDC_DEPOLARITY_AL; /* DE 低电平有效 */ 186. hltdc_F.Init.PCPolarity = LTDC_PCPOLARITY_IPC; 187. 188. /* 时序配置 */ 189. hltdc_F.Init.HorizontalSync = (HSYNC_W - 1); 190. hltdc_F.Init.VerticalSync = (VSYNC_W - 1); 191. hltdc_F.Init.AccumulatedHBP = (HSYNC_W + HBP - 1); 192. hltdc_F.Init.AccumulatedVBP = (VSYNC_W + VBP - 1); 193. hltdc_F.Init.AccumulatedActiveH = (Height + VSYNC_W + VBP - 1); 194. hltdc_F.Init.AccumulatedActiveW = (Width + HSYNC_W + HBP - 1); 195. hltdc_F.Init.TotalHeigh = (Height + VSYNC_W + VBP + VFP - 1); 196. hltdc_F.Init.TotalWidth = (Width + HSYNC_W + HBP + HFP - 1); 197. 198. /* 配置背景层颜色 */ 199. hltdc_F.Init.Backcolor.Blue = 0; 200. hltdc_F.Init.Backcolor.Green = 0; 201. hltdc_F.Init.Backcolor.Red = 0; 202. 203. hltdc_F.Instance = LTDC; 204. 205. /* 开始配置图层 ------------------------------------------------------*/ 206. /* 窗口显示区设置 */ 207. pLayerCfg.WindowX0 = 0; 208. pLayerCfg.WindowX1 = Width; 209. pLayerCfg.WindowY0 = 0; 210. pLayerCfg.WindowY1 = Height; 211. 212. /* 配置颜色格式 */ 213. pLayerCfg.PixelFormat = LTDC_PIXEL_FORMAT_RGB565; 214. 215. /* 显存地址 */ 216. pLayerCfg.FBStartAdress = LCDH7_FRAME_BUFFER; 217. 218. /* Alpha常数 (255 表示完全不透明) */ 219. pLayerCfg.Alpha = 255; 220. 221. /* 无背景色 */ 222. pLayerCfg.Alpha0 = 0; /* 完全透明 */ 223. pLayerCfg.Backcolor.Blue = 0; 224. pLayerCfg.Backcolor.Green = 0; 225. pLayerCfg.Backcolor.Red = 0; 226. 227. /* 配置图层混合因数 */ 228. pLayerCfg.BlendingFactor1 = LTDC_BLENDING_FACTOR1_CA; 229. pLayerCfg.BlendingFactor2 = LTDC_BLENDING_FACTOR2_CA; 230. 231. /* 配置行列大小 */ 232. pLayerCfg.ImageWidth = Width; 233. pLayerCfg.ImageHeight = Height; 234. 235. /* 配置LTDC */ 236. if (HAL_LTDC_Init(&hltdc_F) != HAL_OK) 237. { 238. /* 初始化错误 */ 239. Error_Handler(__FILE__, __LINE__); 240. } 241. 242. /* 配置图层1 */ 243. if (HAL_LTDC_ConfigLayer(&hltdc_F, &pLayerCfg, LTDC_LAYER_1) != HAL_OK) 244. { 245. /* 初始化错误 */ 246. Error_Handler(__FILE__, __LINE__); 247. } 248. 249. #if 0 250. /* 配置图层2 */ 251. if (HAL_LTDC_ConfigLayer(&hltdc_F, &pLayerCfg, LTDC_LAYER_2) != HAL_OK) 252. { 253. /* 初始化错误 */ 254. Error_Handler(__FILE__, __LINE__); 255. } 256. #endif 257. } 258. 259. #if 1 260. HAL_NVIC_SetPriority(LTDC_IRQn, 0xE, 0); 261. HAL_NVIC_EnableIRQ(LTDC_IRQn); 262. #endif 263. }
下面将几个关键的地方做个阐释:
LCD的背光是PWM驱动方式,涉及到的代码如下:
/* ********************************************************************************************************* * 函 数 名: LCD_SetBackLight * 功能说明: 初始化控制LCD背景光的GPIO,配置为PWM模式。 * 当关闭背光时,将CPU IO设置为浮动输入模式(推荐设置为推挽输出,并驱动到低电平);将TIM3关闭 省电 * 形 参: _bright 亮度,0是灭,255是最亮 * 返 回 值: 无 ********************************************************************************************************* */ void LCD_SetBackLight(uint8_t _bright) { s_ucBright = _bright; /* 保存背光值 */ LCD_SetPwmBackLight(s_ucBright); } /* ********************************************************************************************************* * 函 数 名: LCD_SetPwmBackLight * 功能说明: 初始化控制LCD背景光的GPIO,配置为PWM模式。 * 当关闭背光时,将CPU IO设置为浮动输入模式(推荐设置为推挽输出,并驱动到低电平);将TIM3关闭 省电 * 形 参: _bright 亮度,0是灭,255是最亮 * 返 回 值: 无 ********************************************************************************************************* */ static void LCD_SetPwmBackLight(uint8_t _bright) { /* 背光有CPU输出PWM控制,PA0/TIM5_CH1/TIM2_CH1 */ //bsp_SetTIMOutPWM(GPIOA, GPIO_PIN_0, TIM5, 1, 100, (_bright * 10000) /255); //bsp_SetTIMOutPWM(GPIOA, GPIO_PIN_0, TIM5, 1, 20000, (_bright * 10000) /255); bsp_SetTIMOutPWM(GPIOA, GPIO_PIN_8, TIM1, 1, 20000, (_bright * 10000) /255); }
函数的注释已经比较详细。另外,背光是基于第34章的API:bsp_SetTIMOutPWM实现,关于这个函数可以看第34章节。
bsp_ltdc_h7.c是H7的LTDC驱动文件,涉及到的函数比较多。而bsp_tft_lcd.c文件是在LTDC的API基础上面封装出更通用的函数,不仅仅LTDC,像RA8875,ili9488等也可通过此文件进行封装。
本章节主要给几个常用的基本API做个介绍:
函数原型:
/* ********************************************************************************************************* * 函 数 名: LCD_InitHard * 功能说明: 初始化LCD * 形 参: 无 * 返 回 值: 无 ********************************************************************************************************* */ void LCD_InitHard(void) { LCD_HardReset(); LCDH7_InitHard(); LCD_SetDirection(0); LCD_ClrScr(CL_BLACK); /* 清屏,显示全黑 */ // LCD_SetBackLight(BRIGHT_DEFAULT); }
函数描述:
此函数用于初始化LCD,配置了STM32H7的LTDC控制器,设置横向显示,默认清屏为黑色。
注意事项:
使用举例:
作为初始化函数,直接在bsp.c文件的bsp_Init函数里面调用即可。
函数原型:
void LCD_ClrScr(uint16_t _usColor)
函数描述:
此函数用于清屏操作。
函数参数:
/* LCD 颜色代码,CL_是Color的简写 16Bit由高位至低位, RRRR RGGG GGGB BBBB 下面的RGB 宏将24位的RGB值转换为16位格式。 启动windows的画笔程序,点击编辑颜色,选择自定义颜色,可以获得的RGB值。 推荐使用迷你取色器软件获得你看到的界面颜色。 */ #define RGB(R,G,B) (((R >> 3) << 11) | ((G >> 2) << 5) | (B >> 3))/* 将8位R,G,B转化为 16位RGB565格式 */ /* 解码出 R=8bit G=8bit B=8bit */ #define RGB565_R(x) ((x >> 8) & 0xF8) #define RGB565_G(x) ((x >> 3) & 0xFC) #define RGB565_B(x) ((x << 3) & 0xF8) /* 解码出 R=5bit G=6bit B=5bit */ #define RGB565_R2(x) ((x >> 11) & 0x1F) #define RGB565_G2(x) ((x >> 5) & 0x3F) #define RGB565_B2(x) ((x >> 0) & 0x1F) enum { CL_WHITE = RGB(255,255,255), /* 白色 */ CL_BLACK = RGB( 0, 0, 0), /* 黑色 */ CL_RED = RGB(255, 0, 0), /* 红色 */ CL_GREEN = RGB( 0,255, 0), /* 绿色 */ CL_BLUE = RGB( 0, 0,255), /* 蓝色 */ CL_YELLOW = RGB(255,255, 0), /* 黄色 */ CL_GREY = RGB( 98, 98, 98), /* 深灰色 */ CL_GREY1 = RGB( 150, 150, 150), /* 浅灰色 */ CL_GREY2 = RGB( 180, 180, 180), /* 浅灰色 */ CL_GREY3 = RGB( 200, 200, 200), /* 最浅灰色 */ CL_GREY4 = RGB( 230, 230, 230), /* 最浅灰色 */ CL_BUTTON_GREY = RGB( 220, 220, 220), /* WINDOWS 按钮表面灰色 */ CL_MAGENTA = 0xF81F, /* 红紫色,洋红色 */ CL_CYAN = 0x7FFF, /* 蓝绿色,青色 */ CL_BLUE1 = RGB( 0, 0, 240), /* 深蓝色 */ CL_BLUE2 = RGB( 0, 0, 128), /* 深蓝色 */ CL_BLUE3 = RGB( 68, 68, 255), /* 浅蓝色1 */ CL_BLUE4 = RGB( 0, 64, 128), /* 浅蓝色1 */ /* UI 界面 Windows控件常用色 */ CL_BTN_FACE = RGB(236, 233, 216), /* 按钮表面颜色(灰) */ CL_BTN_FONT = CL_BLACK, /* 按钮字体颜色(黑) */ CL_BOX_BORDER1 = RGB(172, 168,153), /* 分组框主线颜色 */ CL_BOX_BORDER2 = RGB(255, 255,255), /* 分组框阴影线颜色 */ CL_MASK = 0x9999 /* 颜色掩码,用于文字背景透明 */ };
使用举例:
比如将LCD清为红色,即LCD_ClrSrc(CL_RED)。
函数原型:
/* ********************************************************************************************************* * 函 数 名: LCD_SetBackLight * 功能说明: 初始化控制LCD背景光的GPIO,配置为PWM模式。 * 当关闭背光时,将CPU IO设置为浮动输入模式(推荐设置为推挽输出,并驱动到低电平);将TIM3关闭 省电 * 形 参: _bright 亮度,0是灭,255是最亮 * 返 回 值: 无 ********************************************************************************************************* */ void LCD_SetBackLight(uint8_t _bright) { s_ucBright = _bright; /* 保存背光值 */ LCD_SetPwmBackLight(s_ucBright); }
函数描述:
此函数主要用于LCD背光设置。
函数参数:
使用举例:
比如设置LCD最亮LCD_SetBackLight(255)。
函数原型:
/* ********************************************************************************************************* * 函 数 名: LCD_DispStr * 功能说明: 在LCD指定坐标(左上角)显示一个字符串 * 形 参: * _usX : X坐标 * _usY : Y坐标 * _ptr : 字符串指针 * _tFont : 字体结构体,包含颜色、背景色(支持透明)、字体代码、文字间距等参数 * 返 回 值: 无 ********************************************************************************************************* */ void LCD_DispStr(uint16_t _usX, uint16_t _usY, char *_ptr, FONT_T *_tFont) { LCD_DispStrEx(_usX, _usY, _ptr, _tFont, 0, 0); }
函数描述:
此函数用于在LCD指定位置显示字符串,中英文均支持。由于这个函数涉及到的知识点比较多,下章节会专门为大家讲解。
函数参数:
/* 字体属性结构, 用于LCD_DispStr() */ typedef struct { FONT_CODE_E FontCode; /* 字体代码 FONT_CODE_E */ uint16_t FrontColor; /* 字体颜色 */ uint16_t BackColor; /* 文字背景颜色,透明 */ uint16_t Space; /* 文字间距,单位 = 像素 */ }FONT_T;
使用举例:
比如显示12点阵和16点阵字符。
FONT_T tFont12; /* 定义一个字体结构体变量,用于设置字体参数 */ FONT_T tFont16; /* 定义一个字体结构体变量,用于设置字体参数 */ /* 设置字体参数 */ { tFont12.FontCode = FC_ST_12; /* 字体代码 12点阵 */ tFont12.FrontColor = CL_WHITE; /* 字体颜色 */ tFont12.BackColor = CL_BLUE; /* 文字背景颜色 */ tFont12.Space = 0; /* 文字间距,单位 = 像素 */ } /* 设置字体参数 */ { tFont16.FontCode = FC_ST_16; /* 字体代码 16点阵 */ tFont16.FrontColor = CL_WHITE; /* 字体颜色 */ tFont16.BackColor = CL_BLUE; /* 文字背景颜色 */ tFont16.Space = 0; /* 文字间距,单位 = 像素 */ } LCD_ClrScr(CL_BLUE); LCD_DispStr(5, 3, "故人西辞黄鹤楼,烟花三月下扬州。", &tFont12); LCD_DispStr(5, 18, "孤帆远影碧空尽,唯见长江天际流。", &tFont12); LCD_DispStr(5, 38, "故人西辞黄鹤楼,烟花三月下扬州。", &tFont16); LCD_DispStr(5, 58, "孤帆远影碧空尽,唯见长江天际流。", &tFont16);
函数原型:
/* ********************************************************************************************************* * 函 数 名: LCD_PutPixel * 功能说明: 画1个像素 * 形 参: * _usX,_usY : 像素坐标 * _usColor : 像素颜色 * 返 回 值: 无 ********************************************************************************************************* */ void LCD_PutPixel(uint16_t _usX, uint16_t _usY, uint16_t _usColor) { LCDH7_PutPixel(_usX, _usY, _usColor); }
函数描述:
此函数用于在指定位置显示一个像素点。
函数参数:
使用举例:
比如在坐标(0, 0)显示红色,那就是LCD_PutPixel(0, 0, CL_RED)。
函数原型:
/* ********************************************************************************************************* * 函 数 名: LCD_DrawLine * 功能说明: 采用 Bresenham 算法,在2点间画一条直线。 * 形 参: * _usX1, _usY1 : 起始点坐标 * _usX2, _usY2 : 终止点Y坐标 * _usColor : 颜色 * 返 回 值: 无 ********************************************************************************************************* */ void LCD_DrawLine(uint16_t _usX1 , uint16_t _usY1 , uint16_t _usX2 , uint16_t _usY2 , uint16_t _usColor) { LCDH7_DrawLine(_usX1 , _usY1 , _usX2, _usY2 , _usColor); }
函数描述:
此函数用于任意两点间的直线绘制,采用的Bresenham算法,关于这个算法的介绍在帖子:
http://www.armbbs.cn/forum.php?mod=viewthread&tid=4048 。
函数参数:
使用举例:
比如在坐标(0, 0)到坐标(100, 100)显示一条红色直线,那就是LCD_DrawLine(0, 0, 100, 100, CL_RED)。
函数原型:
/* ********************************************************************************************************* * 函 数 名: LCD_DrawRect * 功能说明: 绘制水平放置的矩形。 * 形 参: * _usX,_usY: 矩形左上角的坐标 * _usHeight : 矩形的高度 * _usWidth : 矩形的宽度 * 返 回 值: 无 ********************************************************************************************************* */ void LCD_DrawRect(uint16_t _usX, uint16_t _usY, uint16_t _usHeight, uint16_t _usWidth, uint16_t _usColor) { LCDH7_DrawRect(_usX, _usY, _usHeight, _usWidth, _usColor); }
函数描述:
此函数用于绘制矩形框。
函数参数:
使用举例:
比如在坐标(0, 0)绘制一个长度为100,高度为50的红色矩形框,那么就是LCD_DrawRect(0, 0, 100, 50, CL_RED)。
函数原型:
/* ********************************************************************************************************* * 函 数 名: LCD_DrawCircle * 功能说明: 绘制一个圆,笔宽为1个像素 * 形 参: * _usX,_usY : 圆心的坐标 * _usRadius : 圆的半径 * 返 回 值: 无 ********************************************************************************************************* */ void LCD_DrawCircle(uint16_t _usX, uint16_t _usY, uint16_t _usRadius, uint16_t _usColor) { LCDH7_DrawCircle(_usX, _usY, _usRadius, _usColor); }
函数描述:
此函数显示一个圆圈。
函数参数:
使用举例:
比如在坐标(200, 200)绘制一个半径为50的红色圆圈,那么就是LCD_DrawCircle (200, 200, 50, CL_RED)。
函数原型:
/* ********************************************************************************************************* * 函 数 名: LCD_Fill_Rect * 功能说明: 用一个颜色值填充一个矩形。【emWin 中有同名函数 LCD_FillRect,因此加了下划线区分】 * 形 参: * _usX,_usY: 矩形左上角的坐标 * _usHeight : 矩形的高度 * _usWidth : 矩形的宽度 * 返 回 值: 无 ********************************************************************************************************* */ void LCD_Fill_Rect(uint16_t _usX, uint16_t _usY, uint16_t _usHeight, uint16_t _usWidth, uint16_t _usColor) { LCDH7_FillRect(_usX, _usY, _usHeight, _usWidth, _usColor); }
函数描述:
此函数用绘制一个填充的矩形。
函数参数:
使用举例:
比如在坐标(0, 0)绘制一个长度为100,高度为50的红色填充矩形,那么就是
LCD_Fill_Rect (0, 0, 100, 50, CL_RED)。
由于我们开发板要做不同显示屏的自适应,所以关联了好多个文件,所有关于TFT,触摸,触摸校准参数保存和字体的文件都要添加进来。这里有必要先为大家做个介绍才好移植。
asc12.c ---12点阵ASCII字符字库。
asc16.c---16点阵ASCII字符字库。
hz12.c --- 12点阵宋体小字库。
hz16.c --- 16点阵宋体小字库。
hz24.c --- 24点阵宋体小字库。
hz32.c --- 32点阵宋体小字库。
ra8875_asc_width.c -- RA8875 ASCII字体的宽度表。
bsp_fmc_sdram.c---用于TFT的显存。
bsp_tft_h7.c --- STM32H7的LTDC的驱动文件。
bsp_tft_lcd.c --- TFT驱动和相关API函数汇总文件,比如RA8875显示屏,ili9488显示屏,STM32H7所带TFT控制器驱动显示屏都可以有一个单独的文件,然后将这些显示屏相同功能的函数汇总成一个函数。这个文件就起到这个作用。
bsp_touch.c --- 触摸芯片自适应驱动,根据用户使用的触摸IC选择不同的驱动。另外,电阻屏的触摸扫描,触摸校准和触摸滤波也是在这个文件里面实现。
bsp_gt811.c --- 电容触摸芯片GT811的驱动以及触摸扫描。
bsp_gt911.c --- 电容触摸芯片GT911的驱动以及触摸扫描。
bsp_ft5x06.c --- 电容触摸芯片FT5X06的驱动以及触摸扫描。
TOUCH_STMPE811.c --- 电阻触摸芯片STMPE811的驱动。
bsp_tim_pwm.c --- 定时器驱动,显示屏的背光要用到PWM。
bsp_i2c_gpio.c --- I2C接口驱动,EEPROM,GT811,GT911,STMPE811和FT5X06都要用到,因为他们的接口都是I2C方式。
bsp_eeprom_24xx.c --- EEPROM驱动,用于存储电阻屏触摸校准参数。
stm32h7xx_ll_fmc.c 和stm32h7xx_hal_sdram.c ---SDRAM的驱动文件。
stm32h7xx_hal_tim.c --- 显示屏的背光是用PWM驱动的,需要用到这个定时器库文件。
stm32h7xx_hal_ltdc.c --- LTDC相关的API函数需要用到这个库文件。
stm32h7xx_hal_dma2d.c --- DMA2D相关的API函数需要用到这个库文件。
对于本章节的驱动,不推荐单独移植了,建议直接使用本章节配套例子的基础上做修改。
通过程序设计框架,让大家先对配套例程有一个全面的认识,然后再理解细节,本次实验例程的设计框架如下:
第1阶段,上电启动阶段:
第2阶段,进入main函数:
配套例子:
V7-024_LCD的汉字显示和2D图形显示(小字库)
实验目的:
实验内容:
上电后串口打印的信息:
波特率 115200,数据位 8,奇偶校验位无,停止位 1
程序设计:
系统栈大小分配:
RAM空间用的DTCM:
硬件外设初始化
硬件外设的初始化是在 bsp.c 文件实现:
/* ********************************************************************************************************* * 函 数 名: bsp_Init * 功能说明: 初始化所有的硬件设备。该函数配置CPU寄存器和外设的寄存器并初始化一些全局变量。只需要调用一次 * 形 参:无 * 返 回 值: 无 ********************************************************************************************************* */ void bsp_Init(void) { /* 配置MPU */ MPU_Config(); /* 使能L1 Cache */ CPU_CACHE_Enable(); /* STM32H7xx HAL 库初始化,此时系统用的还是H7自带的64MHz,HSI时钟: - 调用函数HAL_InitTick,初始化滴答时钟中断1ms。 - 设置NVIV优先级分组为4。 */ HAL_Init(); /* 配置系统时钟到400MHz - 切换使用HSE。 - 此函数会更新全局变量SystemCoreClock,并重新配置HAL_InitTick。 */ SystemClock_Config(); /* Event Recorder: - 可用于代码执行时间测量,MDK5.25及其以上版本才支持,IAR不支持。 - 默认不开启,如果要使能此选项,务必看V7开发板用户手册第8章 */ #if Enable_EventRecorder == 1 /* 初始化EventRecorder并开启 */ EventRecorderInitialize(EventRecordAll, 1U); EventRecorderStart(); #endif bsp_InitKey(); /* 按键初始化,要放在滴答定时器之前,因为按钮检测是通过滴答定时器扫描 */ bsp_InitTimer(); /* 初始化滴答定时器 */ bsp_InitUart(); /* 初始化串口 */ bsp_InitExtIO(); /* 初始化FMC总线74HC574扩展IO. 必须在 bsp_InitLed()前执行 */ bsp_InitLed(); /* 初始化LED */ bsp_InitI2C(); /* 初始化I2C总线 */ TOUCH_InitHard(); /* 初始化触摸芯片,LCD面板型号的检查也在此函数,所以要在函数LCD_InitHard前调用 */ LCD_InitHard(); /* 初始化LCD */ }
MPU配置和Cache配置:
数据Cache和指令Cache都开启。配置了AXI SRAM区(本例子未用到AXI SRAM),FMC的扩展IO区和SDRAM。由于SDRAM要用于LCD的显存,方便起见,直接将其配置为WT模式。
/* ********************************************************************************************************* * 函 数 名: MPU_Config * 功能说明: 配置MPU * 形 参: 无 * 返 回 值: 无 ********************************************************************************************************* */ static void MPU_Config( void ) { MPU_Region_InitTypeDef MPU_InitStruct; /* 禁止 MPU */ HAL_MPU_Disable(); /* 配置AXI SRAM的MPU属性为Write back, Read allocate,Write allocate */ MPU_InitStruct.Enable = MPU_REGION_ENABLE; MPU_InitStruct.BaseAddress = 0x24000000; MPU_InitStruct.Size = MPU_REGION_SIZE_512KB; MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS; MPU_InitStruct.IsBufferable = MPU_ACCESS_BUFFERABLE; MPU_InitStruct.IsCacheable = MPU_ACCESS_CACHEABLE; MPU_InitStruct.IsShareable = MPU_ACCESS_NOT_SHAREABLE; MPU_InitStruct.Number = MPU_REGION_NUMBER0; MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL1; MPU_InitStruct.SubRegionDisable = 0x00; MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE; HAL_MPU_ConfigRegion(&MPU_InitStruct); /* 配置FMC扩展IO的MPU属性为Device或者Strongly Ordered */ MPU_InitStruct.Enable = MPU_REGION_ENABLE; MPU_InitStruct.BaseAddress = 0x60000000; MPU_InitStruct.Size = ARM_MPU_REGION_SIZE_64KB; MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS; MPU_InitStruct.IsBufferable = MPU_ACCESS_BUFFERABLE; MPU_InitStruct.IsCacheable = MPU_ACCESS_NOT_CACHEABLE; MPU_InitStruct.IsShareable = MPU_ACCESS_NOT_SHAREABLE; MPU_InitStruct.Number = MPU_REGION_NUMBER1; MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL0; MPU_InitStruct.SubRegionDisable = 0x00; MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE; HAL_MPU_ConfigRegion(&MPU_InitStruct); /* 配置SDRAM的MPU属性为Write through, read allocate,no write allocate */ MPU_InitStruct.Enable = MPU_REGION_ENABLE; MPU_InitStruct.BaseAddress = 0xC0000000; MPU_InitStruct.Size = MPU_REGION_SIZE_32MB; MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS; MPU_InitStruct.IsBufferable = MPU_ACCESS_NOT_BUFFERABLE; MPU_InitStruct.IsCacheable = MPU_ACCESS_CACHEABLE; MPU_InitStruct.IsShareable = MPU_ACCESS_NOT_SHAREABLE; MPU_InitStruct.Number = MPU_REGION_NUMBER2; MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL0; MPU_InitStruct.SubRegionDisable = 0x00; MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE; HAL_MPU_ConfigRegion(&MPU_InitStruct); /*使能 MPU */ HAL_MPU_Enable(MPU_PRIVILEGED_DEFAULT); } /* ********************************************************************************************************* * 函 数 名: CPU_CACHE_Enable * 功能说明: 使能L1 Cache * 形 参: 无 * 返 回 值: 无 ********************************************************************************************************* */ static void CPU_CACHE_Enable(void) { /* 使能 I-Cache */ SCB_EnableICache(); /* 使能 D-Cache */ SCB_EnableDCache(); }
主功能:
主程序实现如下操作:
/* ********************************************************************************************************* * 函 数 名: main * 功能说明: c程序入口 * 形 参: 无 * 返 回 值: 错误代码(无需处理) ********************************************************************************************************* */ int main(void) { FONT_T tFont12; /* 定义一个字体结构体变量,用于设置字体参数 */ FONT_T tFont16; /* 定义一个字体结构体变量,用于设置字体参数 */ uint8_t buf[100], count = 0; /* 设置字体参数 */ { tFont12.FontCode = FC_ST_12; /* 字体代码 12点阵 */ tFont12.FrontColor = CL_WHITE; /* 字体颜色 */ tFont12.BackColor = CL_BLUE; /* 文字背景颜色 */ tFont12.Space = 0; /* 文字间距,单位 = 像素 */ } /* 设置字体参数 */ { tFont16.FontCode = FC_ST_16; /* 字体代码 16点阵 */ tFont16.FrontColor = CL_WHITE; /* 字体颜色 */ tFont16.BackColor = CL_BLUE; /* 文字背景颜色 */ tFont16.Space = 0; /* 文字间距,单位 = 像素 */ } bsp_Init(); /* 硬件初始化 */ PrintfLogo(); /* 打印例程名称和版本等信息 */ /* 延迟200ms再点亮背光,避免瞬间高亮 */ bsp_DelayMS(200); /* 清屏 */ LCD_ClrScr(CL_BLUE); /* 显示汉字 */ LCD_DispStr(5, 3, "故人西辞黄鹤楼,烟花三月下扬州。", &tFont12); LCD_DispStr(5, 18, "孤帆远影碧空尽,唯见长江天际流。", &tFont12); LCD_DispStr(5, 38, "故人西辞黄鹤楼,烟花三月下扬州。", &tFont16); LCD_DispStr(5, 58, "孤帆远影碧空尽,唯见长江天际流。", &tFont16); /* 绘制2D图形 */ LCD_DrawLine(5, 120, 100, 220, CL_RED); LCD_DrawRect(120, 120, 100, 100, CL_RED); LCD_DrawCircle(280, 170, 50, CL_RED); LCD_Fill_Rect (340, 120, 100, 100, CL_BUTTON_GREY); /* 界面整体显示完毕后,再打开背光,设置为缺省亮度 */ bsp_DelayMS(100); LCD_SetBackLight(BRIGHT_DEFAULT); bsp_StartAutoTimer(0, 200); /* 启动1个200ms的自动重装的定时器,软件定时器0 */ while (1) { /* 判断软件定时器0是否超时 */ if(bsp_CheckTimer(0)) { /* 每隔200ms 进来一次 */ bsp_LedToggle(2); sprintf((char *)buf, "count = %03d", count++); LCD_DispStr(5, 90, (char *)buf, &tFont16); } } }
配套例子:
V7-024_LCD的汉字显示和2D图形显示(小字库)
实验目的:
实验内容:
上电后串口打印的信息:
波特率 115200,数据位 8,奇偶校验位无,停止位 1
程序设计:
系统栈大小分配:
RAM空间用的DTCM:
硬件外设初始化
硬件外设的初始化是在 bsp.c 文件实现:
/* ********************************************************************************************************* * 函 数 名: bsp_Init * 功能说明: 初始化所有的硬件设备。该函数配置CPU寄存器和外设的寄存器并初始化一些全局变量。只需要调用一次 * 形 参:无 * 返 回 值: 无 ********************************************************************************************************* */ void bsp_Init(void) { /* 配置MPU */ MPU_Config(); /* 使能L1 Cache */ CPU_CACHE_Enable(); /* STM32H7xx HAL 库初始化,此时系统用的还是H7自带的64MHz,HSI时钟: - 调用函数HAL_InitTick,初始化滴答时钟中断1ms。 - 设置NVIV优先级分组为4。 */ HAL_Init(); /* 配置系统时钟到400MHz - 切换使用HSE。 - 此函数会更新全局变量SystemCoreClock,并重新配置HAL_InitTick。 */ SystemClock_Config(); /* Event Recorder: - 可用于代码执行时间测量,MDK5.25及其以上版本才支持,IAR不支持。 - 默认不开启,如果要使能此选项,务必看V7开发板用户手册第8章 */ #if Enable_EventRecorder == 1 /* 初始化EventRecorder并开启 */ EventRecorderInitialize(EventRecordAll, 1U); EventRecorderStart(); #endif bsp_InitKey(); /* 按键初始化,要放在滴答定时器之前,因为按钮检测是通过滴答定时器扫描 */ bsp_InitTimer(); /* 初始化滴答定时器 */ bsp_InitUart(); /* 初始化串口 */ bsp_InitExtIO(); /* 初始化FMC总线74HC574扩展IO. 必须在 bsp_InitLed()前执行 */ bsp_InitLed(); /* 初始化LED */ bsp_InitI2C(); /* 初始化I2C总线 */ TOUCH_InitHard(); /* 初始化触摸芯片,LCD面板型号的检查也在此函数,所以要在函数LCD_InitHard前调用 */ LCD_InitHard(); /* 初始化LCD */ }
MPU配置和Cache配置:
数据Cache和指令Cache都开启。配置了AXI SRAM区(本例子未用到AXI SRAM),FMC的扩展IO区和SDRAM。由于SDRAM要用于LCD的显存,方便起见,直接将其配置为WT模式。
/* ********************************************************************************************************* * 函 数 名: MPU_Config * 功能说明: 配置MPU * 形 参: 无 * 返 回 值: 无 ********************************************************************************************************* */ static void MPU_Config( void ) { MPU_Region_InitTypeDef MPU_InitStruct; /* 禁止 MPU */ HAL_MPU_Disable(); /* 配置AXI SRAM的MPU属性为Write back, Read allocate,Write allocate */ MPU_InitStruct.Enable = MPU_REGION_ENABLE; MPU_InitStruct.BaseAddress = 0x24000000; MPU_InitStruct.Size = MPU_REGION_SIZE_512KB; MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS; MPU_InitStruct.IsBufferable = MPU_ACCESS_BUFFERABLE; MPU_InitStruct.IsCacheable = MPU_ACCESS_CACHEABLE; MPU_InitStruct.IsShareable = MPU_ACCESS_NOT_SHAREABLE; MPU_InitStruct.Number = MPU_REGION_NUMBER0; MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL1; MPU_InitStruct.SubRegionDisable = 0x00; MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE; HAL_MPU_ConfigRegion(&MPU_InitStruct); /* 配置FMC扩展IO的MPU属性为Device或者Strongly Ordered */ MPU_InitStruct.Enable = MPU_REGION_ENABLE; MPU_InitStruct.BaseAddress = 0x60000000; MPU_InitStruct.Size = ARM_MPU_REGION_SIZE_64KB; MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS; MPU_InitStruct.IsBufferable = MPU_ACCESS_BUFFERABLE; MPU_InitStruct.IsCacheable = MPU_ACCESS_NOT_CACHEABLE; MPU_InitStruct.IsShareable = MPU_ACCESS_NOT_SHAREABLE; MPU_InitStruct.Number = MPU_REGION_NUMBER1; MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL0; MPU_InitStruct.SubRegionDisable = 0x00; MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE; HAL_MPU_ConfigRegion(&MPU_InitStruct); /* 配置SDRAM的MPU属性为Write through, read allocate,no write allocate */ MPU_InitStruct.Enable = MPU_REGION_ENABLE; MPU_InitStruct.BaseAddress = 0xC0000000; MPU_InitStruct.Size = MPU_REGION_SIZE_32MB; MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS; MPU_InitStruct.IsBufferable = MPU_ACCESS_NOT_BUFFERABLE; MPU_InitStruct.IsCacheable = MPU_ACCESS_CACHEABLE; MPU_InitStruct.IsShareable = MPU_ACCESS_NOT_SHAREABLE; MPU_InitStruct.Number = MPU_REGION_NUMBER2; MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL0; MPU_InitStruct.SubRegionDisable = 0x00; MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE; HAL_MPU_ConfigRegion(&MPU_InitStruct); /*使能 MPU */ HAL_MPU_Enable(MPU_PRIVILEGED_DEFAULT); } /* ********************************************************************************************************* * 函 数 名: CPU_CACHE_Enable * 功能说明: 使能L1 Cache * 形 参: 无 * 返 回 值: 无 ********************************************************************************************************* */ static void CPU_CACHE_Enable(void) { /* 使能 I-Cache */ SCB_EnableICache(); /* 使能 D-Cache */ SCB_EnableDCache(); }
主功能:
主程序实现如下操作:
/* ********************************************************************************************************* * 函 数 名: main * 功能说明: c程序入口 * 形 参: 无 * 返 回 值: 错误代码(无需处理) ********************************************************************************************************* */ int main(void) { FONT_T tFont12; /* 定义一个字体结构体变量,用于设置字体参数 */ FONT_T tFont16; /* 定义一个字体结构体变量,用于设置字体参数 */ uint8_t buf[100], count = 0; /* 设置字体参数 */ { tFont12.FontCode = FC_ST_12; /* 字体代码 12点阵 */ tFont12.FrontColor = CL_WHITE; /* 字体颜色 */ tFont12.BackColor = CL_BLUE; /* 文字背景颜色 */ tFont12.Space = 0; /* 文字间距,单位 = 像素 */ } /* 设置字体参数 */ { tFont16.FontCode = FC_ST_16; /* 字体代码 16点阵 */ tFont16.FrontColor = CL_WHITE; /* 字体颜色 */ tFont16.BackColor = CL_BLUE; /* 文字背景颜色 */ tFont16.Space = 0; /* 文字间距,单位 = 像素 */ } bsp_Init(); /* 硬件初始化 */ PrintfLogo(); /* 打印例程名称和版本等信息 */ /* 延迟200ms再点亮背光,避免瞬间高亮 */ bsp_DelayMS(200); /* 清屏 */ LCD_ClrScr(CL_BLUE); /* 显示汉字 */ LCD_DispStr(5, 3, "故人西辞黄鹤楼,烟花三月下扬州。", &tFont12); LCD_DispStr(5, 18, "孤帆远影碧空尽,唯见长江天际流。", &tFont12); LCD_DispStr(5, 38, "故人西辞黄鹤楼,烟花三月下扬州。", &tFont16); LCD_DispStr(5, 58, "孤帆远影碧空尽,唯见长江天际流。", &tFont16); /* 绘制2D图形 */ LCD_DrawLine(5, 120, 100, 220, CL_RED); LCD_DrawRect(120, 120, 100, 100, CL_RED); LCD_DrawCircle(280, 170, 50, CL_RED); LCD_Fill_Rect (340, 120, 100, 100, CL_BUTTON_GREY); /* 界面整体显示完毕后,再打开背光,设置为缺省亮度 */ bsp_DelayMS(100); LCD_SetBackLight(BRIGHT_DEFAULT); bsp_StartAutoTimer(0, 200); /* 启动1个200ms的自动重装的定时器,软件定时器0 */ while (1) { /* 判断软件定时器0是否超时 */ if(bsp_CheckTimer(0)) { /* 每隔200ms 进来一次 */ bsp_LedToggle(2); sprintf((char *)buf, "count = %03d", count++); LCD_DispStr(5, 90, (char *)buf, &tFont16); } } }
本章节涉及到的知识点比较多,需要大家花点时间去掌握,直至可以独立驱动一个显示屏。
【STM32H7教程】第51章 STM32H7的LTDC应用之LCD汉字显示和2D图形显示
标签:提示 system 配置方法 targe 设置 也有 检测 矩形 tpi
原文地址:https://www.cnblogs.com/armfly/p/12307227.html