标签:net none key splay 函数 resize should read first
utils_paths.py:
import os image_types = (".jpg", ".jpeg", ".png", ".bmp", ".tif", ".tiff") def list_images(basePath, contains=None): # return the set of files that are valid return list_files(basePath, validExts=image_types, contains=contains) def list_files(basePath, validExts=None, contains=None): # loop over the directory structure for (rootDir, dirNames, filenames) in os.walk(basePath): # loop over the filenames in the current directory for filename in filenames: # if the contains string is not none and the filename does not contain # the supplied string, then ignore the file if contains is not None and filename.find(contains) == -1: continue # determine the file extension of the current file ext = filename[filename.rfind("."):].lower() # check to see if the file is an image and should be processed if validExts is None or ext.endswith(validExts): # construct the path to the image and yield it imagePath = os.path.join(rootDir, filename) yield imagePath
blob_from_images.py:
# 导入工具包 import utils_paths import numpy as np import cv2 # 标签文件处理 rows = open("synset_words.txt").read().strip().split("\n") classes = [r[r.find(" ") + 1:].split(",")[0] for r in rows] # Caffe所需配置文件 net = cv2.dnn.readNetFromCaffe("bvlc_googlenet.prototxt", "bvlc_googlenet.caffemodel") # 图像路径 imagePaths = sorted(list(utils_paths.list_images("images/"))) # 图像数据预处理 image = cv2.imread(imagePaths[0]) resized = cv2.resize(image, (224, 224)) # image scalefactor size mean swapRB blob = cv2.dnn.blobFromImage(resized, 1, (224, 224), (104, 117, 123)) print("First Blob: {}".format(blob.shape)) # 得到预测结果 net.setInput(blob) preds = net.forward() # 排序,取分类可能性最大的 idx = np.argsort(preds[0])[::-1][0] text = "Label: {}, {:.2f}%".format(classes[idx], preds[0][idx] * 100) cv2.putText(image, text, (5, 25), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2) # 显示 cv2.imshow("Image", image) cv2.waitKey(0) # Batch数据制作 images = [] # 方法一样,数据是一个batch for p in imagePaths[1:]: image = cv2.imread(p) image = cv2.resize(image, (224, 224)) images.append(image) # blobFromImages函数,注意有s blob = cv2.dnn.blobFromImages(images, 1, (224, 224), (104, 117, 123)) print("Second Blob: {}".format(blob.shape)) # 获取预测结果 net.setInput(blob) preds = net.forward() for (i, p) in enumerate(imagePaths[1:]): image = cv2.imread(p) idx = np.argsort(preds[i])[::-1][0] text = "Label: {}, {:.2f}%".format(classes[idx], preds[i][idx] * 100) cv2.putText(image, text, (5, 25), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2) cv2.imshow("Image", image) cv2.waitKey(0)
caffe配置文件:
name: "GoogleNet" input: "data" input_dim: 1 input_dim: 3 input_dim: 224 input_dim: 224 layer { name: "conv1/7x7_s2" type: "Convolution" bottom: "data" top: "conv1/7x7_s2" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 64 pad: 3 kernel_size: 7 stride: 2 weight_filler { type: "xavier" std: 0.1 } bias_filler { type: "constant" value: 0.2 } } } layer { name: "conv1/relu_7x7" type: "ReLU" bottom: "conv1/7x7_s2" top: "conv1/7x7_s2" } layer { name: "pool1/3x3_s2" type: "Pooling" bottom: "conv1/7x7_s2" top: "pool1/3x3_s2" pooling_param { pool: MAX kernel_size: 3 stride: 2 } } layer { name: "pool1/norm1" type: "LRN" bottom: "pool1/3x3_s2" top: "pool1/norm1" lrn_param { local_size: 5 alpha: 0.0001 beta: 0.75 } } layer { name: "conv2/3x3_reduce" type: "Convolution" bottom: "pool1/norm1" top: "conv2/3x3_reduce" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 64 kernel_size: 1 weight_filler { type: "xavier" std: 0.1 } bias_filler { type: "constant" value: 0.2 } } } layer { name: "conv2/relu_3x3_reduce" type: "ReLU" bottom: "conv2/3x3_reduce" top: "conv2/3x3_reduce" } layer { name: "conv2/3x3" type: "Convolution" bottom: "conv2/3x3_reduce" top: "conv2/3x3" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 192 pad: 1 kernel_size: 3 weight_filler { type: "xavier" std: 0.03 } bias_filler { type: "constant" value: 0.2 } } } layer { name: "conv2/relu_3x3" type: "ReLU" bottom: "conv2/3x3" top: "conv2/3x3" } layer { name: "conv2/norm2" type: "LRN" bottom: "conv2/3x3" top: "conv2/norm2" lrn_param { local_size: 5 alpha: 0.0001 beta: 0.75 } } layer { name: "pool2/3x3_s2" type: "Pooling" bottom: "conv2/norm2" top: "pool2/3x3_s2" pooling_param { pool: MAX kernel_size: 3 stride: 2 } } layer { name: "inception_3a/1x1" type: "Convolution" bottom: "pool2/3x3_s2" top: "inception_3a/1x1" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 64 kernel_size: 1 weight_filler { type: "xavier" std: 0.03 } bias_filler { type: "constant" value: 0.2 } } } layer { name: "inception_3a/relu_1x1" type: "ReLU" bottom: "inception_3a/1x1" top: "inception_3a/1x1" } layer { name: "inception_3a/3x3_reduce" type: "Convolution" bottom: "pool2/3x3_s2" top: "inception_3a/3x3_reduce" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 96 kernel_size: 1 weight_filler { type: "xavier" std: 0.09 } bias_filler { type: "constant" value: 0.2 } } } layer { name: "inception_3a/relu_3x3_reduce" type: "ReLU" bottom: "inception_3a/3x3_reduce" top: "inception_3a/3x3_reduce" } layer { name: "inception_3a/3x3" type: "Convolution" bottom: "inception_3a/3x3_reduce" top: "inception_3a/3x3" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 128 pad: 1 kernel_size: 3 weight_filler { type: "xavier" std: 0.03 } bias_filler { type: "constant" value: 0.2 } } } layer { name: "inception_3a/relu_3x3" type: "ReLU" bottom: "inception_3a/3x3" top: "inception_3a/3x3" } layer { name: "inception_3a/5x5_reduce" type: "Convolution" bottom: "pool2/3x3_s2" top: "inception_3a/5x5_reduce" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 16 kernel_size: 1 weight_filler { type: "xavier" std: 0.2 } bias_filler { type: "constant" value: 0.2 } } } layer { name: "inception_3a/relu_5x5_reduce" type: "ReLU" bottom: "inception_3a/5x5_reduce" top: "inception_3a/5x5_reduce" } layer { name: "inception_3a/5x5" type: "Convolution" bottom: "inception_3a/5x5_reduce" top: "inception_3a/5x5" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 32 pad: 2 kernel_size: 5 weight_filler { type: "xavier" std: 0.03 } bias_filler { type: "constant" value: 0.2 } } } layer { name: "inception_3a/relu_5x5" type: "ReLU" bottom: "inception_3a/5x5" top: "inception_3a/5x5" } layer { name: "inception_3a/pool" type: "Pooling" bottom: "pool2/3x3_s2" top: "inception_3a/pool" pooling_param { pool: MAX kernel_size: 3 stride: 1 pad: 1 } } layer { name: "inception_3a/pool_proj" type: "Convolution" bottom: "inception_3a/pool" top: "inception_3a/pool_proj" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 32 kernel_size: 1 weight_filler { type: "xavier" std: 0.1 } bias_filler { type: "constant" value: 0.2 } } } layer { name: "inception_3a/relu_pool_proj" type: "ReLU" bottom: "inception_3a/pool_proj" top: "inception_3a/pool_proj" } layer { name: "inception_3a/output" type: "Concat" bottom: "inception_3a/1x1" bottom: "inception_3a/3x3" bottom: "inception_3a/5x5" bottom: "inception_3a/pool_proj" top: "inception_3a/output" } layer { name: "inception_3b/1x1" type: "Convolution" bottom: "inception_3a/output" top: "inception_3b/1x1" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 128 kernel_size: 1 weight_filler { type: "xavier" std: 0.03 } bias_filler { type: "constant" value: 0.2 } } } layer { name: "inception_3b/relu_1x1" type: "ReLU" bottom: "inception_3b/1x1" top: "inception_3b/1x1" } layer { name: "inception_3b/3x3_reduce" type: "Convolution" bottom: "inception_3a/output" top: "inception_3b/3x3_reduce" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 128 kernel_size: 1 weight_filler { type: "xavier" std: 0.09 } bias_filler { type: "constant" value: 0.2 } } } layer { name: "inception_3b/relu_3x3_reduce" type: "ReLU" bottom: "inception_3b/3x3_reduce" top: "inception_3b/3x3_reduce" } layer { name: "inception_3b/3x3" type: "Convolution" bottom: "inception_3b/3x3_reduce" top: "inception_3b/3x3" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 192 pad: 1 kernel_size: 3 weight_filler { type: "xavier" std: 0.03 } bias_filler { type: "constant" value: 0.2 } } } layer { name: "inception_3b/relu_3x3" type: "ReLU" bottom: "inception_3b/3x3" top: "inception_3b/3x3" } layer { name: "inception_3b/5x5_reduce" type: "Convolution" bottom: "inception_3a/output" top: "inception_3b/5x5_reduce" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 32 kernel_size: 1 weight_filler { type: "xavier" std: 0.2 } bias_filler { type: "constant" value: 0.2 } } } layer { name: "inception_3b/relu_5x5_reduce" type: "ReLU" bottom: "inception_3b/5x5_reduce" top: "inception_3b/5x5_reduce" } layer { name: "inception_3b/5x5" type: "Convolution" bottom: "inception_3b/5x5_reduce" top: "inception_3b/5x5" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 96 pad: 2 kernel_size: 5 weight_filler { type: "xavier" std: 0.03 } bias_filler { type: "constant" value: 0.2 } } } layer { name: "inception_3b/relu_5x5" type: "ReLU" bottom: "inception_3b/5x5" top: "inception_3b/5x5" } layer { name: "inception_3b/pool" type: "Pooling" bottom: "inception_3a/output" top: "inception_3b/pool" pooling_param { pool: MAX kernel_size: 3 stride: 1 pad: 1 } } layer { name: "inception_3b/pool_proj" type: "Convolution" bottom: "inception_3b/pool" top: "inception_3b/pool_proj" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 64 kernel_size: 1 weight_filler { type: "xavier" std: 0.1 } bias_filler { type: "constant" value: 0.2 } } } layer { name: "inception_3b/relu_pool_proj" type: "ReLU" bottom: "inception_3b/pool_proj" top: "inception_3b/pool_proj" } layer { name: "inception_3b/output" type: "Concat" bottom: "inception_3b/1x1" bottom: "inception_3b/3x3" bottom: "inception_3b/5x5" bottom: "inception_3b/pool_proj" top: "inception_3b/output" } layer { name: "pool3/3x3_s2" type: "Pooling" bottom: "inception_3b/output" top: "pool3/3x3_s2" pooling_param { pool: MAX kernel_size: 3 stride: 2 } } layer { name: "inception_4a/1x1" type: "Convolution" bottom: "pool3/3x3_s2" top: "inception_4a/1x1" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 192 kernel_size: 1 weight_filler { type: "xavier" std: 0.03 } bias_filler { type: "constant" value: 0.2 } } } layer { name: "inception_4a/relu_1x1" type: "ReLU" bottom: "inception_4a/1x1" top: "inception_4a/1x1" } layer { name: "inception_4a/3x3_reduce" type: "Convolution" bottom: "pool3/3x3_s2" top: "inception_4a/3x3_reduce" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 96 kernel_size: 1 weight_filler { type: "xavier" std: 0.09 } bias_filler { type: "constant" value: 0.2 } } } layer { name: "inception_4a/relu_3x3_reduce" type: "ReLU" bottom: "inception_4a/3x3_reduce" top: "inception_4a/3x3_reduce" } layer { name: "inception_4a/3x3" type: "Convolution" bottom: "inception_4a/3x3_reduce" top: "inception_4a/3x3" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 208 pad: 1 kernel_size: 3 weight_filler { type: "xavier" std: 0.03 } bias_filler { type: "constant" value: 0.2 } } } layer { name: "inception_4a/relu_3x3" type: "ReLU" bottom: "inception_4a/3x3" top: "inception_4a/3x3" } layer { name: "inception_4a/5x5_reduce" type: "Convolution" bottom: "pool3/3x3_s2" top: "inception_4a/5x5_reduce" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 16 kernel_size: 1 weight_filler { type: "xavier" std: 0.2 } bias_filler { type: "constant" value: 0.2 } } } layer { name: "inception_4a/relu_5x5_reduce" type: "ReLU" bottom: "inception_4a/5x5_reduce" top: "inception_4a/5x5_reduce" } layer { name: "inception_4a/5x5" type: "Convolution" bottom: "inception_4a/5x5_reduce" top: "inception_4a/5x5" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 48 pad: 2 kernel_size: 5 weight_filler { type: "xavier" std: 0.03 } bias_filler { type: "constant" value: 0.2 } } } layer { name: "inception_4a/relu_5x5" type: "ReLU" bottom: "inception_4a/5x5" top: "inception_4a/5x5" } layer { name: "inception_4a/pool" type: "Pooling" bottom: "pool3/3x3_s2" top: "inception_4a/pool" pooling_param { pool: MAX kernel_size: 3 stride: 1 pad: 1 } } layer { name: "inception_4a/pool_proj" type: "Convolution" bottom: "inception_4a/pool" top: "inception_4a/pool_proj" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 64 kernel_size: 1 weight_filler { type: "xavier" std: 0.1 } bias_filler { type: "constant" value: 0.2 } } } layer { name: "inception_4a/relu_pool_proj" type: "ReLU" bottom: "inception_4a/pool_proj" top: "inception_4a/pool_proj" } layer { name: "inception_4a/output" type: "Concat" bottom: "inception_4a/1x1" bottom: "inception_4a/3x3" bottom: "inception_4a/5x5" bottom: "inception_4a/pool_proj" top: "inception_4a/output" } layer { name: "inception_4b/1x1" type: "Convolution" bottom: "inception_4a/output" top: "inception_4b/1x1" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 160 kernel_size: 1 weight_filler { type: "xavier" std: 0.03 } bias_filler { type: "constant" value: 0.2 } } } layer { name: "inception_4b/relu_1x1" type: "ReLU" bottom: "inception_4b/1x1" top: "inception_4b/1x1" } layer { name: "inception_4b/3x3_reduce" type: "Convolution" bottom: "inception_4a/output" top: "inception_4b/3x3_reduce" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 112 kernel_size: 1 weight_filler { type: "xavier" std: 0.09 } bias_filler { type: "constant" value: 0.2 } } } layer { name: "inception_4b/relu_3x3_reduce" type: "ReLU" bottom: "inception_4b/3x3_reduce" top: "inception_4b/3x3_reduce" } layer { name: "inception_4b/3x3" type: "Convolution" bottom: "inception_4b/3x3_reduce" top: "inception_4b/3x3" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 224 pad: 1 kernel_size: 3 weight_filler { type: "xavier" std: 0.03 } bias_filler { type: "constant" value: 0.2 } } } layer { name: "inception_4b/relu_3x3" type: "ReLU" bottom: "inception_4b/3x3" top: "inception_4b/3x3" } layer { name: "inception_4b/5x5_reduce" type: "Convolution" bottom: "inception_4a/output" top: "inception_4b/5x5_reduce" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 24 kernel_size: 1 weight_filler { type: "xavier" std: 0.2 } bias_filler { type: "constant" value: 0.2 } } } layer { name: "inception_4b/relu_5x5_reduce" type: "ReLU" bottom: "inception_4b/5x5_reduce" top: "inception_4b/5x5_reduce" } layer { name: "inception_4b/5x5" type: "Convolution" bottom: "inception_4b/5x5_reduce" top: "inception_4b/5x5" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 64 pad: 2 kernel_size: 5 weight_filler { type: "xavier" std: 0.03 } bias_filler { type: "constant" value: 0.2 } } } layer { name: "inception_4b/relu_5x5" type: "ReLU" bottom: "inception_4b/5x5" top: "inception_4b/5x5" } layer { name: "inception_4b/pool" type: "Pooling" bottom: "inception_4a/output" top: "inception_4b/pool" pooling_param { pool: MAX kernel_size: 3 stride: 1 pad: 1 } } layer { name: "inception_4b/pool_proj" type: "Convolution" bottom: "inception_4b/pool" top: "inception_4b/pool_proj" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 64 kernel_size: 1 weight_filler { type: "xavier" std: 0.1 } bias_filler { type: "constant" value: 0.2 } } } layer { name: "inception_4b/relu_pool_proj" type: "ReLU" bottom: "inception_4b/pool_proj" top: "inception_4b/pool_proj" } layer { name: "inception_4b/output" type: "Concat" bottom: "inception_4b/1x1" bottom: "inception_4b/3x3" bottom: "inception_4b/5x5" bottom: "inception_4b/pool_proj" top: "inception_4b/output" } layer { name: "inception_4c/1x1" type: "Convolution" bottom: "inception_4b/output" top: "inception_4c/1x1" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 128 kernel_size: 1 weight_filler { type: "xavier" std: 0.03 } bias_filler { type: "constant" value: 0.2 } } } layer { name: "inception_4c/relu_1x1" type: "ReLU" bottom: "inception_4c/1x1" top: "inception_4c/1x1" } layer { name: "inception_4c/3x3_reduce" type: "Convolution" bottom: "inception_4b/output" top: "inception_4c/3x3_reduce" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 128 kernel_size: 1 weight_filler { type: "xavier" std: 0.09 } bias_filler { type: "constant" value: 0.2 } } } layer { name: "inception_4c/relu_3x3_reduce" type: "ReLU" bottom: "inception_4c/3x3_reduce" top: "inception_4c/3x3_reduce" } layer { name: "inception_4c/3x3" type: "Convolution" bottom: "inception_4c/3x3_reduce" top: "inception_4c/3x3" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 256 pad: 1 kernel_size: 3 weight_filler { type: "xavier" std: 0.03 } bias_filler { type: "constant" value: 0.2 } } } layer { name: "inception_4c/relu_3x3" type: "ReLU" bottom: "inception_4c/3x3" top: "inception_4c/3x3" } layer { name: "inception_4c/5x5_reduce" type: "Convolution" bottom: "inception_4b/output" top: "inception_4c/5x5_reduce" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 24 kernel_size: 1 weight_filler { type: "xavier" std: 0.2 } bias_filler { type: "constant" value: 0.2 } } } layer { name: "inception_4c/relu_5x5_reduce" type: "ReLU" bottom: "inception_4c/5x5_reduce" top: "inception_4c/5x5_reduce" } layer { name: "inception_4c/5x5" type: "Convolution" bottom: "inception_4c/5x5_reduce" top: "inception_4c/5x5" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 64 pad: 2 kernel_size: 5 weight_filler { type: "xavier" std: 0.03 } bias_filler { type: "constant" value: 0.2 } } } layer { name: "inception_4c/relu_5x5" type: "ReLU" bottom: "inception_4c/5x5" top: "inception_4c/5x5" } layer { name: "inception_4c/pool" type: "Pooling" bottom: "inception_4b/output" top: "inception_4c/pool" pooling_param { pool: MAX kernel_size: 3 stride: 1 pad: 1 } } layer { name: "inception_4c/pool_proj" type: "Convolution" bottom: "inception_4c/pool" top: "inception_4c/pool_proj" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 64 kernel_size: 1 weight_filler { type: "xavier" std: 0.1 } bias_filler { type: "constant" value: 0.2 } } } layer { name: "inception_4c/relu_pool_proj" type: "ReLU" bottom: "inception_4c/pool_proj" top: "inception_4c/pool_proj" } layer { name: "inception_4c/output" type: "Concat" bottom: "inception_4c/1x1" bottom: "inception_4c/3x3" bottom: "inception_4c/5x5" bottom: "inception_4c/pool_proj" top: "inception_4c/output" } layer { name: "inception_4d/1x1" type: "Convolution" bottom: "inception_4c/output" top: "inception_4d/1x1" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 112 kernel_size: 1 weight_filler { type: "xavier" std: 0.03 } bias_filler { type: "constant" value: 0.2 } } } layer { name: "inception_4d/relu_1x1" type: "ReLU" bottom: "inception_4d/1x1" top: "inception_4d/1x1" } layer { name: "inception_4d/3x3_reduce" type: "Convolution" bottom: "inception_4c/output" top: "inception_4d/3x3_reduce" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 144 kernel_size: 1 weight_filler { type: "xavier" std: 0.09 } bias_filler { type: "constant" value: 0.2 } } } layer { name: "inception_4d/relu_3x3_reduce" type: "ReLU" bottom: "inception_4d/3x3_reduce" top: "inception_4d/3x3_reduce" } layer { name: "inception_4d/3x3" type: "Convolution" bottom: "inception_4d/3x3_reduce" top: "inception_4d/3x3" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 288 pad: 1 kernel_size: 3 weight_filler { type: "xavier" std: 0.03 } bias_filler { type: "constant" value: 0.2 } } } layer { name: "inception_4d/relu_3x3" type: "ReLU" bottom: "inception_4d/3x3" top: "inception_4d/3x3" } layer { name: "inception_4d/5x5_reduce" type: "Convolution" bottom: "inception_4c/output" top: "inception_4d/5x5_reduce" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 32 kernel_size: 1 weight_filler { type: "xavier" std: 0.2 } bias_filler { type: "constant" value: 0.2 } } } layer { name: "inception_4d/relu_5x5_reduce" type: "ReLU" bottom: "inception_4d/5x5_reduce" top: "inception_4d/5x5_reduce" } layer { name: "inception_4d/5x5" type: "Convolution" bottom: "inception_4d/5x5_reduce" top: "inception_4d/5x5" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 64 pad: 2 kernel_size: 5 weight_filler { type: "xavier" std: 0.03 } bias_filler { type: "constant" value: 0.2 } } } layer { name: "inception_4d/relu_5x5" type: "ReLU" bottom: "inception_4d/5x5" top: "inception_4d/5x5" } layer { name: "inception_4d/pool" type: "Pooling" bottom: "inception_4c/output" top: "inception_4d/pool" pooling_param { pool: MAX kernel_size: 3 stride: 1 pad: 1 } } layer { name: "inception_4d/pool_proj" type: "Convolution" bottom: "inception_4d/pool" top: "inception_4d/pool_proj" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 64 kernel_size: 1 weight_filler { type: "xavier" std: 0.1 } bias_filler { type: "constant" value: 0.2 } } } layer { name: "inception_4d/relu_pool_proj" type: "ReLU" bottom: "inception_4d/pool_proj" top: "inception_4d/pool_proj" } layer { name: "inception_4d/output" type: "Concat" bottom: "inception_4d/1x1" bottom: "inception_4d/3x3" bottom: "inception_4d/5x5" bottom: "inception_4d/pool_proj" top: "inception_4d/output" } layer { name: "inception_4e/1x1" type: "Convolution" bottom: "inception_4d/output" top: "inception_4e/1x1" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 256 kernel_size: 1 weight_filler { type: "xavier" std: 0.03 } bias_filler { type: "constant" value: 0.2 } } } layer { name: "inception_4e/relu_1x1" type: "ReLU" bottom: "inception_4e/1x1" top: "inception_4e/1x1" } layer { name: "inception_4e/3x3_reduce" type: "Convolution" bottom: "inception_4d/output" top: "inception_4e/3x3_reduce" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 160 kernel_size: 1 weight_filler { type: "xavier" std: 0.09 } bias_filler { type: "constant" value: 0.2 } } } layer { name: "inception_4e/relu_3x3_reduce" type: "ReLU" bottom: "inception_4e/3x3_reduce" top: "inception_4e/3x3_reduce" } layer { name: "inception_4e/3x3" type: "Convolution" bottom: "inception_4e/3x3_reduce" top: "inception_4e/3x3" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 320 pad: 1 kernel_size: 3 weight_filler { type: "xavier" std: 0.03 } bias_filler { type: "constant" value: 0.2 } } } layer { name: "inception_4e/relu_3x3" type: "ReLU" bottom: "inception_4e/3x3" top: "inception_4e/3x3" } layer { name: "inception_4e/5x5_reduce" type: "Convolution" bottom: "inception_4d/output" top: "inception_4e/5x5_reduce" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 32 kernel_size: 1 weight_filler { type: "xavier" std: 0.2 } bias_filler { type: "constant" value: 0.2 } } } layer { name: "inception_4e/relu_5x5_reduce" type: "ReLU" bottom: "inception_4e/5x5_reduce" top: "inception_4e/5x5_reduce" } layer { name: "inception_4e/5x5" type: "Convolution" bottom: "inception_4e/5x5_reduce" top: "inception_4e/5x5" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 128 pad: 2 kernel_size: 5 weight_filler { type: "xavier" std: 0.03 } bias_filler { type: "constant" value: 0.2 } } } layer { name: "inception_4e/relu_5x5" type: "ReLU" bottom: "inception_4e/5x5" top: "inception_4e/5x5" } layer { name: "inception_4e/pool" type: "Pooling" bottom: "inception_4d/output" top: "inception_4e/pool" pooling_param { pool: MAX kernel_size: 3 stride: 1 pad: 1 } } layer { name: "inception_4e/pool_proj" type: "Convolution" bottom: "inception_4e/pool" top: "inception_4e/pool_proj" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 128 kernel_size: 1 weight_filler { type: "xavier" std: 0.1 } bias_filler { type: "constant" value: 0.2 } } } layer { name: "inception_4e/relu_pool_proj" type: "ReLU" bottom: "inception_4e/pool_proj" top: "inception_4e/pool_proj" } layer { name: "inception_4e/output" type: "Concat" bottom: "inception_4e/1x1" bottom: "inception_4e/3x3" bottom: "inception_4e/5x5" bottom: "inception_4e/pool_proj" top: "inception_4e/output" } layer { name: "pool4/3x3_s2" type: "Pooling" bottom: "inception_4e/output" top: "pool4/3x3_s2" pooling_param { pool: MAX kernel_size: 3 stride: 2 } } layer { name: "inception_5a/1x1" type: "Convolution" bottom: "pool4/3x3_s2" top: "inception_5a/1x1" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 256 kernel_size: 1 weight_filler { type: "xavier" std: 0.03 } bias_filler { type: "constant" value: 0.2 } } } layer { name: "inception_5a/relu_1x1" type: "ReLU" bottom: "inception_5a/1x1" top: "inception_5a/1x1" } layer { name: "inception_5a/3x3_reduce" type: "Convolution" bottom: "pool4/3x3_s2" top: "inception_5a/3x3_reduce" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 160 kernel_size: 1 weight_filler { type: "xavier" std: 0.09 } bias_filler { type: "constant" value: 0.2 } } } layer { name: "inception_5a/relu_3x3_reduce" type: "ReLU" bottom: "inception_5a/3x3_reduce" top: "inception_5a/3x3_reduce" } layer { name: "inception_5a/3x3" type: "Convolution" bottom: "inception_5a/3x3_reduce" top: "inception_5a/3x3" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 320 pad: 1 kernel_size: 3 weight_filler { type: "xavier" std: 0.03 } bias_filler { type: "constant" value: 0.2 } } } layer { name: "inception_5a/relu_3x3" type: "ReLU" bottom: "inception_5a/3x3" top: "inception_5a/3x3" } layer { name: "inception_5a/5x5_reduce" type: "Convolution" bottom: "pool4/3x3_s2" top: "inception_5a/5x5_reduce" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 32 kernel_size: 1 weight_filler { type: "xavier" std: 0.2 } bias_filler { type: "constant" value: 0.2 } } } layer { name: "inception_5a/relu_5x5_reduce" type: "ReLU" bottom: "inception_5a/5x5_reduce" top: "inception_5a/5x5_reduce" } layer { name: "inception_5a/5x5" type: "Convolution" bottom: "inception_5a/5x5_reduce" top: "inception_5a/5x5" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 128 pad: 2 kernel_size: 5 weight_filler { type: "xavier" std: 0.03 } bias_filler { type: "constant" value: 0.2 } } } layer { name: "inception_5a/relu_5x5" type: "ReLU" bottom: "inception_5a/5x5" top: "inception_5a/5x5" } layer { name: "inception_5a/pool" type: "Pooling" bottom: "pool4/3x3_s2" top: "inception_5a/pool" pooling_param { pool: MAX kernel_size: 3 stride: 1 pad: 1 } } layer { name: "inception_5a/pool_proj" type: "Convolution" bottom: "inception_5a/pool" top: "inception_5a/pool_proj" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 128 kernel_size: 1 weight_filler { type: "xavier" std: 0.1 } bias_filler { type: "constant" value: 0.2 } } } layer { name: "inception_5a/relu_pool_proj" type: "ReLU" bottom: "inception_5a/pool_proj" top: "inception_5a/pool_proj" } layer { name: "inception_5a/output" type: "Concat" bottom: "inception_5a/1x1" bottom: "inception_5a/3x3" bottom: "inception_5a/5x5" bottom: "inception_5a/pool_proj" top: "inception_5a/output" } layer { name: "inception_5b/1x1" type: "Convolution" bottom: "inception_5a/output" top: "inception_5b/1x1" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 384 kernel_size: 1 weight_filler { type: "xavier" std: 0.03 } bias_filler { type: "constant" value: 0.2 } } } layer { name: "inception_5b/relu_1x1" type: "ReLU" bottom: "inception_5b/1x1" top: "inception_5b/1x1" } layer { name: "inception_5b/3x3_reduce" type: "Convolution" bottom: "inception_5a/output" top: "inception_5b/3x3_reduce" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 192 kernel_size: 1 weight_filler { type: "xavier" std: 0.09 } bias_filler { type: "constant" value: 0.2 } } } layer { name: "inception_5b/relu_3x3_reduce" type: "ReLU" bottom: "inception_5b/3x3_reduce" top: "inception_5b/3x3_reduce" } layer { name: "inception_5b/3x3" type: "Convolution" bottom: "inception_5b/3x3_reduce" top: "inception_5b/3x3" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 384 pad: 1 kernel_size: 3 weight_filler { type: "xavier" std: 0.03 } bias_filler { type: "constant" value: 0.2 } } } layer { name: "inception_5b/relu_3x3" type: "ReLU" bottom: "inception_5b/3x3" top: "inception_5b/3x3" } layer { name: "inception_5b/5x5_reduce" type: "Convolution" bottom: "inception_5a/output" top: "inception_5b/5x5_reduce" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 48 kernel_size: 1 weight_filler { type: "xavier" std: 0.2 } bias_filler { type: "constant" value: 0.2 } } } layer { name: "inception_5b/relu_5x5_reduce" type: "ReLU" bottom: "inception_5b/5x5_reduce" top: "inception_5b/5x5_reduce" } layer { name: "inception_5b/5x5" type: "Convolution" bottom: "inception_5b/5x5_reduce" top: "inception_5b/5x5" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 128 pad: 2 kernel_size: 5 weight_filler { type: "xavier" std: 0.03 } bias_filler { type: "constant" value: 0.2 } } } layer { name: "inception_5b/relu_5x5" type: "ReLU" bottom: "inception_5b/5x5" top: "inception_5b/5x5" } layer { name: "inception_5b/pool" type: "Pooling" bottom: "inception_5a/output" top: "inception_5b/pool" pooling_param { pool: MAX kernel_size: 3 stride: 1 pad: 1 } } layer { name: "inception_5b/pool_proj" type: "Convolution" bottom: "inception_5b/pool" top: "inception_5b/pool_proj" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 128 kernel_size: 1 weight_filler { type: "xavier" std: 0.1 } bias_filler { type: "constant" value: 0.2 } } } layer { name: "inception_5b/relu_pool_proj" type: "ReLU" bottom: "inception_5b/pool_proj" top: "inception_5b/pool_proj" } layer { name: "inception_5b/output" type: "Concat" bottom: "inception_5b/1x1" bottom: "inception_5b/3x3" bottom: "inception_5b/5x5" bottom: "inception_5b/pool_proj" top: "inception_5b/output" } layer { name: "pool5/7x7_s1" type: "Pooling" bottom: "inception_5b/output" top: "pool5/7x7_s1" pooling_param { pool: AVE kernel_size: 7 stride: 1 } } layer { name: "pool5/drop_7x7_s1" type: "Dropout" bottom: "pool5/7x7_s1" top: "pool5/7x7_s1" dropout_param { dropout_ratio: 0.4 } } layer { name: "loss3/classifier" type: "InnerProduct" bottom: "pool5/7x7_s1" top: "loss3/classifier" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } inner_product_param { num_output: 1000 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "prob" type: "Softmax" bottom: "loss3/classifier" top: "prob" }
效果:
标签:net none key splay 函数 resize should read first
原文地址:https://www.cnblogs.com/SCCQ/p/12312775.html