码迷,mamicode.com
首页 > 其他好文 > 详细

[LuoguP5319] [BJOI2019] 奥术神杖 (01分数规划+AC自动机+dp)

时间:2020-02-15 19:21:03      阅读:78      评论:0      收藏:0      [点我收藏+]

标签:问题   应该   int   class   include   数字串   情况   iostream   while   

[LuoguP5319] [BJOI2019] 奥术神杖 (01分数规划+AC自动机+dp)

题面

神杖上从左到右镶嵌了\(n\)颗奥术宝石,奥术宝石一共有 1010 种,用数字 0123456789 表示。有些位置的宝石已经残缺,用 . 表示,你需要用完好的奥术宝石填补每一处残缺的部分(每种奥术宝石个数不限,且不能够更换未残缺的宝石)。古老的魔法书上记载了 \(m\) 种咒语 \((S_i,V_i)\),其中 \(S_i\)是一个非空数字串,\(V_i\)是这种组合能够激发的神力。

神杖的初始神力值 \(\mathrm{Magic} = 1\),每当神杖中出现了连续一段宝石与$ S_i$ 相等时,神力值 $\mathrm{Magic} $ 就会乘以$ V_i\(。但神杖如果包含了太多咒语就不再纯净导致神力降低:设\) c$ 为神杖包含的咒语个数(若咒语类别相同但出现位置不同视为多次),神杖最终的神力值为 \(\sqrt[c]{\mathrm{Magic} }\)。(若 \(c=0\) 则神杖最终神力值为\(1\)。)

你需要使修复好的神杖的最终的神力值最大,输出任何一个解即可。

分析

按照套路,把最终答案两边取\(\ln\),每个\(V_i\)选和不选记为\(x_i\)

\[\ln \sqrt[c]{Magic}=\frac{1}{c} \ln \prod V_ix_i =\frac{1}{c} \sum x_i(\ln V_i)\]

那么把\(V_i\)\(\ln\)之后就变成了一个经典的01分数规划问题。我们可以二分答案\(mid\),考虑实际值比当前二分值更大的情况,即\(\frac{1}{c} \sum x_i(\ln V_i)>mid\), 可以转化为选取一些\(V_i\)来最大化\(\sum (\ln V_i-mid)\) ,如果这个最大值大于0,就说明实际值比当前二分值更大。

如何求\(\max(\sum (\ln V_i-mid))\)?看到多模式串匹配,我们想到在AC自动机上DP. 设\(dp_{i,j}\)表示序列的前\(i\)位在AC自动机上匹配到节点\(j\)时的最大值。那么容易写出状态转移方程:

\[dp_{i+1,\delta(j,k)}=\max(dp_{i,j}+cost(\delta(j,k))) \ (k \in \{0 ,1,2 \cdots 9 \})\]

其中\(\delta(j,k)\)表示\(j\)节点通过字符\(k\)转移后得到的新节点。\(cost(x)\)表示匹配到\(x\)节点对答案的贡献。如果原串匹配了节点\(x\)对应的串,答案将增加\(V_i-mid\).但是,匹配了\(x\)之后还可能匹配\(x\)的后缀,因此答案增加的值应该是fail树上\(x\)到初始节点的路径上所有点的\(V_i-mid\)之和。每次算一遍\(cost\)显然会超时,所以我们在BFS预处理时计算\(x\)到初始节点的路径上所有点的\(\ln V_i\)之和\(val_x\)和点的个数\(sz_x\). 这样\(cost(\delta(j,k))=val_{\delta(j,k)}-sz_{\delta(j,k)} \times mid\)

为了输出答案,还要在dp过程中记录最优转移。

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<cmath>
#include<algorithm>
#define maxn 2000
#define maxc 10
#define INF 1e18
#define eps 1e-9
#define maxln 100
using namespace std;
int n,m;
char str[maxn+5],tmp[maxn+5];
double w[maxn+5];

struct AC_automaton {
    int ch[maxn+5][maxc];
    int sz[maxn+5];//记录x在fail树上到根的链上点的个数
    double val[maxn+5];//记录链上权值和
    int fail[maxn+5];
    int ptr;
    void insert(char *s,double v) {
        int x=0;
        int len=strlen(s+1);
        for(int i=1; i<=len; i++) {
            int c=s[i]-'0';
            if(!ch[x][c]) ch[x][c]=++ptr;
            x=ch[x][c];
        }
        sz[x]++;
        val[x]+=v;
    }
    void get_fail() {
        queue<int>q;
        for(int i=0; i<maxc; i++) if(ch[0][i]) q.push(ch[0][i]);
        while(!q.empty()) {
            int x=q.front();
            q.pop();
            sz[x]+=sz[fail[x]];
            val[x]+=val[fail[x]];
            for(int i=0; i<maxc; i++) {
                if(ch[x][i]) {
                    fail[ch[x][i]]=ch[fail[x]][i];
                    q.push(ch[x][i]);
                } else ch[x][i]=ch[fail[x]][i];
            }
        }
    }
} T;
double dp[maxn+5][maxn+5];
pair<int,int>res[maxn+5][maxn+5];//记录dp[i][j]由哪个转移过来
void print(int i,int j) {
    if(i==0) return;
    print(i-1,res[i][j].first);
    putchar(res[i][j].second+'0');
}
bool check(double mid,int type) {
    for(int i=0;i<=n;i++){
        for(int j=0;j<=T.ptr;j++){
            dp[i][j]=-INF;
            if(type) res[i][j]=make_pair(0,0);
        }
    }
    dp[0][0]=0;
    for(int i=0; i<n; i++) {
        for(int j=0; j<=T.ptr; j++) {
            if(str[i+1]=='.') { //可以选
                for(int k=0; k<maxc; k++) {
                    int nex=T.ch[j][k];
                    if(dp[i+1][nex]<dp[i][j]+T.val[nex]-mid*T.sz[nex]) { //01分数规划,每个点变成w[i]-mid
                        dp[i+1][nex]=dp[i][j]+T.val[nex]-mid*T.sz[nex];
                        if(type) res[i+1][nex]=make_pair(j,k);
                    }
                }
            } else {
                int k=str[i+1]-'0';
                int nex=T.ch[j][k];
                if(dp[i+1][nex]<dp[i][j]+T.val[nex]-mid*T.sz[nex]) { //01分数规划,每个点变成w[i]-mid
                    dp[i+1][nex]=dp[i][j]+T.val[nex]-mid*T.sz[nex];
                    if(type) res[i+1][nex]=make_pair(j,k);
                }
            }
        }
    }
    double ans=0;
    int id=0;
    for(int j=0; j<=T.ptr; j++){
        if(dp[n][j]>ans){
            id=j;
            ans=dp[n][j];
        }
    }
    if(type) print(n,id);
    return ans>=eps;
}

int main() {
    scanf("%d %d",&n,&m);
    scanf("%s",str+1);
    for(int i=1;i<=m;i++){
        scanf("%s",tmp+1);
        scanf("%lf",&w[i]);
        w[i]=log(w[i]);
        T.insert(tmp,w[i]);
    }
    T.get_fail();
    double l=0,r=maxln,mid,ans=0;
    while(fabs(r-l)>eps){
        mid=(l+r)/2;
        if(check(mid,0)){
            ans=mid;
            l=mid;
        }else r=mid;
    }
//  printf("debug: %lf\n",exp(ans));
    check(ans,1);
}

[LuoguP5319] [BJOI2019] 奥术神杖 (01分数规划+AC自动机+dp)

标签:问题   应该   int   class   include   数字串   情况   iostream   while   

原文地址:https://www.cnblogs.com/birchtree/p/12312943.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!