码迷,mamicode.com
首页 > 其他好文 > 详细

pytorch 中LSTM模型获取最后一层的输出结果,单向或双向

时间:2020-02-17 19:41:57      阅读:379      评论:0      收藏:0      [点我收藏+]

标签:import   dir   fir   练习   color   conda   highlight   lstm   ast   

单向LSTM

 

import torch.nn as nn
import torch

seq_len = 20
batch_size = 64
embedding_dim = 100
num_embeddings = 300
hidden_size = 128
number_layer = 3

input = torch.randint(low=0,high=256,size=[batch_size,seq_len])  #[64,20]

embedding = nn.Embedding(num_embeddings,embedding_dim)

input_embeded = embedding(input)  #[64,20,100]

#转置,变换batch_size 和seq_len
# input_embeded = input_embeded.transpose(0,1)
# input_embeded = input_embeded.permute(1,0,2)
#实例化lstm

lstm = nn.LSTM(input_size=embedding_dim,hidden_size=hidden_size,batch_first=True,num_layers=number_layer)

output,(h_n,c_n) = lstm(input_embeded)
print(output.size()) #[64,20,128]       [batch_size,seq_len,hidden_size]
print(h_n.size()) #[3,64,128]           [number_layer,batch_size,hidden_size]
print(c_n.size()) #同上


#获取最后时间步的output
output_last = output[:,-1,:]
#获取最后一层的h_n
h_n_last = h_n[-1]

print(output_last.size())
print(h_n_last.size())
#最后的output等于最后一层的h_n
print(output_last.eq(h_n_last))


D:\anaconda\python.exe C:/Users/liuxinyu/Desktop/pytorch_test/day4/LSTM练习.py
torch.Size([64, 20, 128])
torch.Size([3, 64, 128])
torch.Size([3, 64, 128])
torch.Size([64, 128])
torch.Size([64, 128])
tensor([[True, True, True, ..., True, True, True],
[True, True, True, ..., True, True, True],
[True, True, True, ..., True, True, True],
...,
[True, True, True, ..., True, True, True],
[True, True, True, ..., True, True, True],
[True, True, True, ..., True, True, True]])

Process finished with exit code 0

 

  双向LSTM

 

import torch.nn as nn
import torch

seq_len = 20
batch_size = 64
embedding_dim = 100
num_embeddings = 300
hidden_size = 128
number_layer = 3

input = torch.randint(low=0,high=256,size=[batch_size,seq_len])  #[64,20]

embedding = nn.Embedding(num_embeddings,embedding_dim)

input_embeded = embedding(input)  #[64,20,100]

#转置,变换batch_size 和seq_len
# input_embeded = input_embeded.transpose(0,1)
# input_embeded = input_embeded.permute(1,0,2)
#实例化lstm

lstm = nn.LSTM(input_size=embedding_dim,hidden_size=hidden_size,batch_first=True,num_layers=number_layer,bidirectional=True)

output,(h_n,c_n) = lstm(input_embeded)
print(output.size()) #[64,20,128*2]       [batch_size,seq_len,hidden_size]
print(h_n.size()) #[3*2,64,128]           [number_layer,batch_size,hidden_size]
print(c_n.size()) #同上


#获取反向的最后一个output
output_last = output[:,0,-128:]
#获反向最后一层的h_n
h_n_last = h_n[-1]

print(output_last.size())
print(h_n_last.size())
# 反向最后的output等于最后一层的h_n
print(output_last.eq(h_n_last))

#获取正向的最后一个output
output_last = output[:,-1,:128]
#获取正向最后一层的h_n
h_n_last = h_n[-2]
# 反向最后的output等于最后一层的h_n
print(output_last.eq(h_n_last))


D:\anaconda\python.exe C:/Users/liuxinyu/Desktop/pytorch_test/day4/双向LSTM练习.py
torch.Size([64, 20, 256])
torch.Size([6, 64, 128])
torch.Size([6, 64, 128])
torch.Size([64, 128])
torch.Size([64, 128])
tensor([[True, True, True, ..., True, True, True],
[True, True, True, ..., True, True, True],
[True, True, True, ..., True, True, True],
...,
[True, True, True, ..., True, True, True],
[True, True, True, ..., True, True, True],
[True, True, True, ..., True, True, True]])
tensor([[True, True, True, ..., True, True, True],
[True, True, True, ..., True, True, True],
[True, True, True, ..., True, True, True],
...,
[True, True, True, ..., True, True, True],
[True, True, True, ..., True, True, True],
[True, True, True, ..., True, True, True]])

Process finished with exit code 0

 

  

 

pytorch 中LSTM模型获取最后一层的输出结果,单向或双向

标签:import   dir   fir   练习   color   conda   highlight   lstm   ast   

原文地址:https://www.cnblogs.com/LiuXinyu12378/p/12322993.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!