码迷,mamicode.com
首页 > 其他好文 > 详细

POJ 2914 Minimum Cut 最小割图论

时间:2014-11-04 08:06:33      阅读:273      评论:0      收藏:0      [点我收藏+]

标签:des   style   blog   http   io   color   ar   os   for   

Description

Given an undirected graph, in which two vertices can be connected by multiple edges, what is the size of the minimum cut of the graph? i.e. how many edges must be removed at least to disconnect the graph into two subgraphs?

Input

Input contains multiple test cases. Each test case starts with two integers N and M (2 ≤ N ≤ 500, 0 ≤ M ≤ N × (N ? 1) ? 2) in one line, where N is the number of vertices. Following are M lines, each line contains M integers AB and C (0 ≤ AB < NA ≠ BC > 0), meaning that there C edges connecting vertices A and B.

Output

There is only one line for each test case, which contains the size of the minimum cut of the graph. If the graph is disconnected, print 0.

Sample Input

3 3
0 1 1
1 2 1
2 0 1
4 3
0 1 1
1 2 1
2 3 1
8 14
0 1 1
0 2 1
0 3 1
1 2 1
1 3 1
2 3 1
4 5 1
4 6 1
4 7 1
5 6 1
5 7 1
6 7 1
4 0 1
7 3 1

Sample Output

2
1
2

Source

Baidu Star 2006 Semifinal 
Wang, Ying (Originator) 
Chen, Shixi (Test cases)

本题是06年百度之星半决赛的题目,图论的最小割问题,算是图论高级内容吧。

Stoer Wager算法,其中的难点是:

1 逐条边查找最大的边的权值-过程有点想Prime算法,不过实际上不是Prime算法,因为目的并不是最大生成树,而是需要把一个顶点的所有边都加起来,把这些边去掉,就是这个顶点的割点值了。那么就需要遍历整个图,到了最后一个节点才能保证是找到了这个节点的所有边。

2 缩点:所谓缩点就是把最后一个节点去掉,同时保留其边值信息,实际就是保留这个顶点的和其他顶点相连的最小边值。

比较难理解的,一般写这个题解报告的博客,一个是要么直接抄模板了;二是要么没有解说;三个是有了几句解说了,结果都没理解好,甚至错误;

也是很难说清楚的一个题目,看看我详细注释的程序吧。

#include <stdio.h>
#include <string.h>
#include <limits.h>
#include <algorithm>
using namespace std;

const int MAX_N = 501;
int gra[MAX_N][MAX_N];//矩阵表示图

bool shrinkedVertices[MAX_N];//标志那些顶点已经被缩点了
bool vis[MAX_N];//标志当前那些节点已经访问了
int dis[MAX_N];//记录最大距离
int lastSec, last;//记录每次最后cut边的两个顶点
int getLastCut(int leftVertices, int n)//每次计算剩下多少没缩点的顶点计算即可
{
	fill(dis, dis+n, 0);
	fill(vis, vis+n, false);
	int curVer = 0;//curVer代表当前选取的顶点,初始为选取0顶点
	lastSec = last = 0;

	//循环的主要作用的把一个顶点的所有边都加起来。只有在最后一次选择的时候才能确保最后一个顶点的所有边都加起来了。
	for (int i = 1; i < leftVertices; i++)
	{//操作的是边,边比顶点少1的,故此i从1开始,不是从0开始
		for (int v = 1; v < n; v++)
		{//0顶点已经最先选择了,故此v从1开始,不是从0开始
			if (!vis[v] && !shrinkedVertices[v]) dis[v] += gra[v][curVer];
		}//主要是把一个顶点的所有边都加起来
		int maxCut = 0;
		//选取当前最大的割边,未到最后一点,不能保证是真正的割边
		for (int v = 1; v < n; v++)
		{
			if (!vis[v] && !shrinkedVertices[v] && dis[v] > maxCut)
			{
				maxCut = dis[v];
				curVer = v;
			}
		}
		if (!maxCut) return 0;//本来就是分隔图,割边可以为零了。
		vis[curVer] = true;
		lastSec = last; last = curVer;//逐次保存最后两个顶点
	}
	return dis[last];
}

int Stoer_Wagner(int n)
{
	fill(shrinkedVertices, shrinkedVertices+n, false);
	int minCut = INT_MAX;
	for (int i = n; i > 1; i--)
	{		
		minCut = min(minCut, getLastCut(i, n));
		if (!minCut) return 0;
		shrinkedVertices[last] = true;
		for (int v = 0; v < n; v++)
		{
			if (!shrinkedVertices[v])
				gra[lastSec][v] = gra[v][lastSec] += 
				min(gra[v][last], gra[last][lastSec]);//其实缩点就是保留其中一段边,需要保留最小值边,确保是最小割。
		}
	}
	return minCut == INT_MAX? 0 : minCut;
}


int main()
{
	int N, M, u, v, w;
	while (~scanf("%d %d", &N, &M))
	{
		for (int i = 0; i < N; i++)
		{
			for (int j = 0; j < N; j++)
			{
				gra[i][j] = 0;
			}
		}
		for (int i = 0; i < M; i++)
		{
			scanf("%d %d %d", &u, &v, &w);
			gra[u][v] = gra[v][u] += w;
		}
		printf("%d\n", Stoer_Wagner(N));
	}
	return 0;
}

不过上面程序的效率不高,那么可以优化一下,优化的主要方法是,利用一个数组保存好剩下的顶点,那么缩点的时候直接删除这个顶点,就不用下一次还需要遍历判断这个顶点。这样优化了常数项,实际运行时间快了2到3倍左右,效果很好。

#include <stdio.h>
#include <string.h>
#include <limits.h>
#include <algorithm>
using namespace std;

const int MAX_N = 501;
int gra[MAX_N][MAX_N];
int vps[MAX_N];
bool vis[MAX_N];
int dis[MAX_N];
int last, sec;

int getLastCut(int V)
{
	fill(vis, vis+V, false);
	fill(dis, dis+V, 0);
	last = sec = 0;
	int id = 0;
	for (int i = 1; i < V; i++)
	{
		int v = vps[id];
		for (int j = 1; j < V; j++)
		{
			if (!vis[j]) dis[j] += gra[v][vps[j]];
		}
		int m = 0;
		for (int j = 1; j < V; j++)
		{
			if (!vis[j] && m < dis[j]) m = dis[j], id = j;
		}
		if (!m) return 0;
		vis[id] = true;
		sec = last; last = vps[id];
	}
	swap(vps[id], vps[V-1]);
	return dis[id];
}

int Stoer_wagner(int n)
{
	for (int i = 0; i < n; i++) vps[i] = i;
	int minCut = INT_MAX;
	for (int V = n; V > 1; V--)
	{
		minCut = min(minCut, getLastCut(V));
		if (!minCut) return 0;
		for (int i = 0; i < V; i++)
		{
			int v = vps[i];
			gra[v][sec] = gra[sec][v] += min(gra[v][last], gra[last][sec]);
		}
	}
	return minCut == INT_MAX? 0 : minCut;
}

int main()
{
	int Ver, Edge, u, v, w;
	while (~scanf("%d %d", &Ver, &Edge))
	{
		for (int i = 0; i < Ver; i++)
			for (int j = 0; j < Ver; j++)
				gra[i][j] = 0;

		for (int i = 0; i < Edge; i++)
		{
			scanf("%d %d %d", &u, &v, &w);
			gra[u][v] = gra[v][u] += w;
		}
		printf("%d\n", Stoer_wagner(Ver));
	}
	return 0;
}



POJ 2914 Minimum Cut 最小割图论

标签:des   style   blog   http   io   color   ar   os   for   

原文地址:http://blog.csdn.net/kenden23/article/details/40778471

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!