码迷,mamicode.com
首页 > 其他好文 > 详细

任务安排一

时间:2020-02-21 14:36:31      阅读:61      评论:0      收藏:0      [点我收藏+]

标签:mat   scan   online   +=   规划   大于   分组   author   class   

任务安排一

题目描述:

N个任务排成一个序列在一台机器上等待完成(顺序不得改变),这N个任务被分成若干批,每批包含相邻的若干任务。从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时间是Ti。在每批任务开始前,机器需要启动时间S,而完成这批任务所需的时间是各个任务需要时间的总和(同一批任务将在同一时刻完成)。每个任务的费用是它的完成时刻乘以一个费用系数Fi。请确定一个分组方案,使得总费用最小。
例如:S=1;T={1,3,4,2,1};F={3,2,3,3,4}。如果分组方案是{1,2}、{3}、{4,5},则完成时间分别为{5,5,10,14,14},费用C={15,10,30,42,56},总费用就是153。

输入:

第一行是N(1<=N<=5000)。
第二行是S(0<=S<=50)。
下面N行每行有一对数,分别为Ti和Fi,均为不大于100的正整数,表示第i个任务单独完成所需的时间是Ti及其费用系数Fi。

输出:

一个数,最小的总费用。

样例输入:

5
1
1 3
3 2
4 3
2 3
1 4

样例输出:

153

题解:

一道动态规划题,对于每一个任务有两种选择(1)归到上一批队伍中,(2)新开始一批队伍,但是每次选择会影响后面的任务的状态,所以想到用前缀和来进行dp。

状态转移方程如下:

\(dp[i] = min(dp[i],dp[j] + sumt[i] * (sumf[i] - sumf[j]) + s * (sumf[n] - sumf[i]))\)

其中sumtsumftf的前缀和

/**********************************************************
* @Author:             Maple
* @Date:               2020-02-21 09:05:23
* @Last Modified by:   Maple
* @Last Modified time: 2020-02-21 09:32:40
* @Remark: 
**********************************************************/
#include <bits/stdc++.h>
#define CSE(x,y) memset(x,y,sizeof(x))
#define INF 1000000009;
using namespace std;
typedef long long ll;
const int maxn=5555;
ll n,s,t[maxn],f[maxn],dp[maxn];

int main()
{
    #ifndef ONLINE_JUDGE
    freopen("in.in","r",stdin);
    #endif
    cin>>n>>s;
    for(int i=1;i<=n;i++){
        scanf("%lld%lld",t+i,f+i);
        t[i]+=t[i-1];
        f[i]+=f[i-1];
        dp[i]=INF;
    }
    dp[0]=0;
    for(int i=1;i<=n;i++){
        for(int j=0;j<=i;j++){
            dp[i]=min(dp[i],dp[j]+t[i]*(f[i]-f[j])+s*(f[n]-f[j]));
        }
    }
    cout<<dp[n]<<endl;
    return 0;
}

任务安排一

标签:mat   scan   online   +=   规划   大于   分组   author   class   

原文地址:https://www.cnblogs.com/LeafLove/p/12341024.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!