标签:under rsh setw utils ant cut 图片 log more
技术点:springcloud + kafka + hbase + mogodb
1、建立实体对象
浏览商品行为 ScanProductLog
收藏商品行为 CollectProductLog
购物车行为 BuyCartProductLog
关注商品行为 AttentionProductLog
2、搭建kafka并创建topic ,搭建可参考:https://www.cnblogs.com/ywjfx/p/10305161.html ,整合springboot可参考:https://www.cnblogs.com/ywjfx/p/11197646.html
bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic scanProductLog bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic collectProductLog bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic buyCartProductLog bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic attentionProductLog
3、添加flink stream 依赖
<dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-connector-kafka-0.10_${scala.binary.version}</artifactId> <version>${project.version}</version> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-streaming-scala_2.11</artifactId> <version>${project.version}</version> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-streaming-java_${scala.binary.version}</artifactId> <version>${project.version}</version> </dependency>
4、BrandLikeTask.java
package com.yangwj.task; import com.yangwj.entity.BrandLike; import com.yangwj.kafka.KafkaEvent; import com.yangwj.map.BrandLikeMap; import com.yangwj.reduce.BrandLikeReduce; import com.yangwj.reduce.BrandLikeSink; import org.apache.flink.api.common.restartstrategy.RestartStrategies; import org.apache.flink.api.java.utils.ParameterTool; import org.apache.flink.streaming.api.TimeCharacteristic; import org.apache.flink.streaming.api.datastream.DataStream; import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; import org.apache.flink.streaming.api.functions.AssignerWithPeriodicWatermarks; import org.apache.flink.streaming.api.watermark.Watermark; import org.apache.flink.streaming.api.windowing.time.Time; import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer010; import com.yangwj.kafka.KafkaEventSchema; import javax.annotation.Nullable; /** * Created by li on 2019/1/6. */ public class BrandlikeTask { public static void main(String[] args) { // parse input arguments args = new String[]{"--input-topic","scanProductLog","--bootstrap.servers","192.168.80.134:9092","--zookeeper.connect","192.168.80.134:2181","--group.id","yangwj"}; final ParameterTool parameterTool = ParameterTool.fromArgs(args); // if (parameterTool.getNumberOfParameters() < 5) { // System.out.println("Missing parameters!\n" + // "Usage: Kafka --input-topic <topic> --output-topic <topic> " + // "--bootstrap.servers <kafka brokers> " + // "--zookeeper.connect <zk quorum> --group.id <some id>"); // return; // } StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); env.getConfig().disableSysoutLogging(); env.getConfig().setRestartStrategy(RestartStrategies.fixedDelayRestart(4, 10000)); env.enableCheckpointing(5000); // create a checkpoint every 5 seconds env.getConfig().setGlobalJobParameters(parameterTool); // make parameters available in the web interface env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime); DataStream<KafkaEvent> input = env .addSource( new FlinkKafkaConsumer010<>( parameterTool.getRequired("input-topic"), new KafkaEventSchema(), parameterTool.getProperties()) .assignTimestampsAndWatermarks(new CustomWatermarkExtractor()));//订阅并读取kafka数据 DataStream<BrandLike> brandLikeMap = input.flatMap(new BrandLikeMap()); DataStream<BrandLike> brandLikeReduce = brandLikeMap.keyBy("groupbyfield").timeWindowAll(Time.seconds(2)).reduce(new BrandLikeReduce()); brandLikeReduce.addSink(new BrandLikeSink()); try { env.execute("brandLike analy"); } catch (Exception e) { e.printStackTrace(); } } private static class CustomWatermarkExtractor implements AssignerWithPeriodicWatermarks<KafkaEvent> { private static final long serialVersionUID = -742759155861320823L; private long currentTimestamp = Long.MIN_VALUE; @Override public long extractTimestamp(KafkaEvent event, long previousElementTimestamp) { // the inputs are assumed to be of format (message,timestamp) this.currentTimestamp = event.getTimestamp(); return event.getTimestamp(); } @Nullable @Override public Watermark getCurrentWatermark() { return new Watermark(currentTimestamp == Long.MIN_VALUE ? Long.MIN_VALUE : currentTimestamp - 1); } } }
5、KafkaEvent.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.yangwj.kafka; /** * The event type used in the {@link Kafka010Example}. * * <p>This is a Java POJO, which Flink recognizes and will allow "by-name" field referencing * when keying a {@link org.apache.flink.streaming.api.datastream.DataStream} of such a type. * For a demonstration of this, see the code in {@link Kafka010Example}. */ public class KafkaEvent { private final static String splitword = "##"; private String word; private int frequency; private long timestamp; public KafkaEvent() {} public KafkaEvent(String word, int frequency, long timestamp) { this.word = word; this.frequency = frequency; this.timestamp = timestamp; } public String getWord() { return word; } public void setWord(String word) { this.word = word; } public int getFrequency() { return frequency; } public void setFrequency(int frequency) { this.frequency = frequency; } public long getTimestamp() { return timestamp; } public void setTimestamp(long timestamp) { this.timestamp = timestamp; } public static KafkaEvent fromString(String eventStr) { String[] split = eventStr.split(splitword); return new KafkaEvent(split[0], Integer.valueOf(split[1]), Long.valueOf(split[2])); } @Override public String toString() { return word +splitword + frequency + splitword + timestamp; } }
6、KafkaEventSchema.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.yangwj.kafka; import org.apache.flink.api.common.serialization.DeserializationSchema; import org.apache.flink.api.common.serialization.SerializationSchema; import org.apache.flink.api.common.typeinfo.TypeInformation; import java.io.IOException; /** * The serialization schema for the {@link KafkaEvent} type. This class defines how to transform a * Kafka record‘s bytes to a {@link KafkaEvent}, and vice-versa. */ public class KafkaEventSchema implements DeserializationSchema<KafkaEvent>, SerializationSchema<KafkaEvent> { private static final long serialVersionUID = 6154188370181669758L; @Override public byte[] serialize(KafkaEvent event) { return event.toString().getBytes(); } @Override public KafkaEvent deserialize(byte[] message) throws IOException { return KafkaEvent.fromString(new String(message)); } @Override public boolean isEndOfStream(KafkaEvent nextElement) { return false; } @Override public TypeInformation<KafkaEvent> getProducedType() { return TypeInformation.of(KafkaEvent.class); } }
7、BrandLikeMap.java
注意:使用 FlatMapFunction,是因为要有两个标签给到reduce,如果只有一个标签,可以使用MapFunction
package com.yangwj.map; import com.alibaba.fastjson.JSONObject; import com.yangwj.entity.BrandLike; import com.yangwj.kafka.KafkaEvent; import com.yangwj.log.ScanProductLog; import com.yangwj.util.HbaseUtils; import com.yangwj.utils.MapUtils; import org.apache.commons.lang.StringUtils; import org.apache.flink.api.common.functions.FlatMapFunction; import org.apache.flink.util.Collector; import java.util.HashMap; import java.util.Map; /** * Created by li on 2019/1/6. */ public class BrandLikeMap implements FlatMapFunction<KafkaEvent, BrandLike> { @Override public void flatMap(KafkaEvent kafkaEvent, Collector<BrandLike> collector) throws Exception { String data = kafkaEvent.getWord(); ScanProductLog scanProductLog = JSONObject.parseObject(data,ScanProductLog.class); int userid = scanProductLog.getUserid(); String brand = scanProductLog.getBrand(); String tablename = "userflaginfo"; String rowkey = userid+""; String famliyname = "userbehavior"; String colum = "brandlist";//运营 String mapdata = HbaseUtils.getdata(tablename,rowkey,famliyname,colum); Map<String,Long> map = new HashMap<String,Long>(); if(StringUtils.isNotBlank(mapdata)){ map = JSONObject.parseObject(mapdata,Map.class); } //获取之前的品牌偏好 String maxprebrand = MapUtils.getmaxbyMap(map); long prebarnd = map.get(brand)==null?0l:map.get(brand); map.put(brand,prebarnd+1); String finalstring = JSONObject.toJSONString(map); HbaseUtils.putdata(tablename,rowkey,famliyname,colum,finalstring); String maxbrand = MapUtils.getmaxbyMap(map); if(StringUtils.isNotBlank(maxbrand)&&!maxprebrand.equals(maxbrand)){ BrandLike brandLike = new BrandLike(); brandLike.setBrand(maxprebrand); brandLike.setCount(-1l); brandLike.setGroupbyfield("==brandlik=="+maxprebrand); collector.collect(brandLike); } BrandLike brandLike = new BrandLike(); brandLike.setBrand(maxbrand); brandLike.setCount(1l); collector.collect(brandLike); brandLike.setGroupbyfield("==brandlik=="+maxbrand); colum = "brandlike"; HbaseUtils.putdata(tablename,rowkey,famliyname,colum,maxbrand); } }
8、BrandLikeReduce.java
package com.yangwj.reduce; import com.yangwj.entity.BrandLike; import com.yangwj.entity.CarrierInfo; import org.apache.flink.api.common.functions.ReduceFunction; /** * Created by li on 2019/1/6. */ public class BrandLikeReduce implements ReduceFunction<BrandLike> { @Override public BrandLike reduce(BrandLike brandLike, BrandLike t1) throws Exception { String brand = brandLike.getBrand(); long count1 = brandLike.getCount(); long count2 = t1.getCount(); BrandLike brandLikefinal = new BrandLike(); brandLikefinal.setBrand(brand); brandLikefinal.setCount(count1+count2); return brandLikefinal; } }
9、BrandLikeSink.java
package com.yangwj.reduce; import com.yangwj.entity.BrandLike; import com.yangj.util.MongoUtils; import org.apache.flink.streaming.api.functions.sink.SinkFunction; import org.bson.Document; /** * Created by li on 2019/1/6. */ public class BrandLikeSink implements SinkFunction<BrandLike> { @Override public void invoke(BrandLike value, Context context) throws Exception { String brand = value.getBrand(); long count = value.getCount(); Document doc = MongoUtils.findoneby("brandlikestatics","portrait",brand); if(doc == null){ doc = new Document(); doc.put("info",brand); doc.put("count",count); }else{ Long countpre = doc.getLong("count"); Long total = countpre+count; doc.put("count",total); } MongoUtils.saveorupdatemongo("brandlikestatics","portrait",doc); } }
10、BrandLike.java
package com.yangwj.entity; /** * Created by li on 2019/1/6. */ public class BrandLike { private String brand; private long count; private String groupbyfield; public String getGroupbyfield() { return groupbyfield; } public void setGroupbyfield(String groupbyfield) { this.groupbyfield = groupbyfield; } public String getBrand() { return brand; } public void setBrand(String brand) { this.brand = brand; } public long getCount() { return count; } public void setCount(long count) { this.count = count; } }
标签:under rsh setw utils ant cut 图片 log more
原文地址:https://www.cnblogs.com/ywjfx/p/12349496.html