Mike has n strings s1, s2, ..., sn each consisting of lowercase English letters. In one move he can choose a string si, erase the first character and append it to the end of the string. For example, if he has the string "coolmike", in one move he can transform it into the string "oolmikec".
Now Mike asks himself: what is minimal number of moves that he needs to do in order to make all the strings equal?
Input
The first line contains integer n (1 ≤ n ≤ 50) — the number of strings.
This is followed by n lines which contain a string each. The i-th line corresponding to string si. Lengths of strings are equal. Lengths of each string is positive and don‘t exceed 50.
Output
Print the minimal number of moves Mike needs in order to make all the strings equal or print - 1 if there is no solution.
Examples
input
Copy
4 xzzwo zwoxz zzwox xzzwo
output
Copy
5
input
Copy
2 molzv lzvmo
output
Copy
2
input
Copy
3 kc kc kc
output
Copy
0
input
Copy
3 aa aa ab
output
Copy
-1
Note
In the first sample testcase the optimal scenario is to perform operations in such a way as to transform all strings into "zwoxz".
数据量小,暴力解决
#include <iostream>
#include <vector>
#include <algorithm>
#include <string>
#include <set>
#include <queue>
#include <map>
#include <sstream>
#include <cstdio>
#include <cstring>
#include <numeric>
#include <cmath>
#include <unordered_set>
#include <unordered_map>
#include <xfunctional>
#define ll long long
#define mod 998244353
usingnamespace std;
int dir[4][2] = { {0,1},{0,-1},{-1,0},{1,0} };
constint maxn = 16;
constlonglong inf = 0x7f7f7f7f7f7f7f7f;
int main()
{
int n;
cin >> n;
vector<string> s(n);
for (int i = 0; i < n; i++)
cin >> s[i];
int len = s[0].size();
int dp=1e9;
for (int i = 0; i < n; i++)
{
int cnt = 0;
for (int j = 0; j < n; j++)
{
string t=s[j];
if (j != i)
{
for (int k = 0; k < len; k++)
{
if (k == len - 1 && t != s[i])
{
cout << -1;
return0;
}
if (t == s[i])
break;
else
{
char first=t[0];
t.erase(0,1);
t += first;
cnt++;
}
}
}
}
dp = min(dp, cnt);
}
cout << dp;
return0;
}