码迷,mamicode.com
首页 > 其他好文 > 详细

Review: STMC-AAAI2020

时间:2020-02-24 00:24:11      阅读:87      评论:0      收藏:0      [点我收藏+]

标签:一个   eps   VID   ros   rop   整合   github   infer   数量级   

Spatial-Temporal Multi-Cue Network for Continuous Sign Language Recognition

来自中科大的文章,发表在AAAI2020上。

提出了一种利用空间和时间上的多种信息相结合的端到端学习框架,RWTH-v2 WER: 21.1,RWTH-v3 WER: 19.6,达到了最新的State-Of-The-Art。

主要创新点在于:1.空间建模。利用姿态估计预测人体7对关键点,再基于关键点为中心,剪裁出与手语强相关的左右手的patch,人脸patch等的信息,作为多种信息来源进行特征提取,最后输出人脸,人手,全图,姿态4种来源的特征向量。2.时间建模。时间建模有两条路径,一条是多信号间的时间建模,另一条是多信号内的时间建模,充分挖掘了各信号的时间信息。

此外沿用了前些年文章里提出的staged optimization strategy生成伪标签进行迭代优化。

Outlines

  1. STMC Architecture
  2. Spatial Multi-Cue Module
  3. Temporal Multi-Cue Module
  4. Loss function and Inference
  5. Details of the experiments
  6. Results

1. STMC Architecture

技术图片

  • 网络的最终输出分为两部分:Inter-cue path与Intra-cue path,这两部分的输出与姿态估计的输出加权在一起计算Loss。最终的Inference过程仅由Inter-cue path输出预测值。(否则计算量高,速度慢?)
  • 图中N指的是信息来源的个数,文中N=4,分别来源于full-frame, hands, face, pose。

2. Spatial Multi-Cue Module

技术图片

  • SMC模块中,作者在VGG11 backbone的基础上,新设计了一个独立的Pose Estimation支路,预测7个关键点,分别是鼻子,左右肩,左右肘,左右手腕。增添的独立的Pose Estimation支路起到了正则化的作用,缓解了网络的过拟合程度。
  • 得到关键点后,1.分别以关键点为中心,按照固定大小裁剪出人脸,左右手的图像块,用于生成Multi-cues进而进行特征提取。2. 得到人体姿态特征向量。(细节:裁剪时注意不要越界,HRNet用于生成keypoints annotations)
  • 获取Spatial Multi-Cue Representation vector。分别来自full-frame, left and right hands, face, pose,维度如图所示,注意左右手的特征提取时采用了参数共享的卷积。

3. Temporal Multi-Cue Module

技术图片

作者提出的TMC Module旨在从inter-cue和intra-cue两个方面整合时空信息,而不是简单的信息融合。

The intra-cue path captures the unique features of each visual cue.

The inter-cue path learns the combination of fused features from different cues at different time scales.

3.1 Intra-Cue Path(信号内)

The first path is to provide unique fea- tures of different cues at different time scales.

技术图片

  • k = 5, N = 4, C = 1024,\(K^\frac{C}{N}_k\)为时间卷积核(即一维卷积核)
  • 该路径分别对4种信号的vector进行kernel_size = 5的 conv_relu 运算,再将4种信号的vector concate为1个vector,变量的维度如公式 (5) (6)中所示。

3.2 Inter-Cue Path(信号间)

The second path is to perform the temporal transformation on the inter-cue feature from the previous block and fuse information from the intra-cue path as follows.

技术图片

  • \(K^\frac{C}{2}_1\)实现了维度变换(1024 -> 512)
  • 该路径实现了对前一Inter-cue vector的时间变换及对该模块中Intra-cue vector的融合

在每个Block之后,有TP为kernel size = 2, stride = 2的Temporal max-pooling运算。

4. Loss function and Inference

4.1 Loss function

在训练过程中,作者将Inter-cue path作为主要优化目标。为了提供每个单独信息特征的融合,Intra-cue path作起到辅助作用。因此,整个STMC框架的目标函数如下:

技术图片

  • \(\alpha\)用于控制辅助loss的比重,\(\beta\)用于使姿态估计回归损失与其他损失处于相同的数量级
  • \(L^\beta_R\)为smooth-L1 loss用于姿态估计的目标函数

技术图片

4.2 Inference

For inference, we pass video frames through the SMC and TMC modules. Only the inter-cue feature sequence and its BLSTM encoder are used to generate the pos- terior probability distribution of glosses at all time steps. We use the beam search decoder (Hannun et al. 2014) to search the most probable sequence within an acceptable range.(the beam width is set to 20)

5. Details of the experiments

  • 为了获得关键点位置用于训练,作用使用了开源的HRNet工具去估计文中所述上半身7个关键点。

  • Input frames are resized to 224 x 224
  • Random crop at the same location of all frames, random discard of 20% frames, random flip all fr ames
  • Inter-cue features, output channels after TCOVs and BLSTM are all set to 1024
  • Intra-cue features, output channels atfer TCOVs and BLSTM are all set to 256
  • Adam, lr = 5e-5, batch_siz e= 2, \(\alpha\) = 0.6, \(\beta\) = 30

Staged optimization strategy:

First, we train a VGG11-based network as DNF (Cui, Liu, and Zhang 2019) and use it to decode pseudo labels for each clip. Then, we add a fully-connected layer after each output of the TMC module. The STMC network without BLSTM is trained with cross-entropy and smooth-L1 loss by SGD optimizer. The batch size is 24 and the clip size is 16. Finally, with fine- tuned parameters from the previous stage, our full STMC network is trained end-to-end under joint loss optimization.

6. Results

技术图片

技术图片

技术图片

技术图片

Review: STMC-AAAI2020

标签:一个   eps   VID   ros   rop   整合   github   infer   数量级   

原文地址:https://www.cnblogs.com/august-en/p/12355146.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!