码迷,mamicode.com
首页 > 其他好文 > 详细

AGC011-E Increasing Numbers

时间:2020-02-24 13:09:14      阅读:55      评论:0      收藏:0      [点我收藏+]

标签:高精度   数位   limits   复杂度   通过   line   number   lin   十进制   

题意

给定一个数\(n\)\(n≤10^{500,000}\),问\(n\)最少可以拆分成几个不降数的和。一个不降数是在十进制位下,从高位往低位看,每个数都不会比高位的数更小的数

做法

不降数可以拆成若干个形似\(1111...111\)的数相加
位数为\(l\)的全\(1\)数可以写成\(\dfrac{10^{l+1}-1}{9}\)

\(N=\sum\limits_{i=1}^k \dfrac{10^{a_i}-1}{9}\)
通过手玩可以进一步发现充分条件:\(9|k\)

写成\(N+9k=\sum\limits_{i=1}^{9k}10^{a_i}\)
枚举\(k\),判断\(N+9k\)的数位之和是否小于等于\(9k\)就好了

高精度加\(1\)复杂度是均摊的,\(O(位数)\)

AGC011-E Increasing Numbers

标签:高精度   数位   limits   复杂度   通过   line   number   lin   十进制   

原文地址:https://www.cnblogs.com/Grice/p/12356219.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!