标签:端点 ble alc def syn case clu i+1 return
题目链接
本题也是区间dp,贪心可证,每一次出发必定是从端点,否则必然有重复,不会是最小值,那我们可以设dpi,j,0/1,0代表从左端点出发,1代表从右端点,因为每次都是从端点出发,状态方程为
dpi,j,0=min(dpi+1,j,0+d[i+1]-d[i], dpi+1,j,1+dp[j]-dp[i])分别表示from i to i+1 to j, from i to j to i+1
dpi,j,1=min(dpi,j-1,1+d[j]-d[j-1], dpi,j-1,0+dp[j]-dp[i])分别表示from j to j-1 to i, from j to i to j-1
#include<bits/stdc++.h>
using namespace std;
#define lowbit(x) ((x)&(-x))
typedef long long LL;
typedef pair<int,int> pii;
const int maxn = 205;
const int INF = 0x3f3f3f3f;
int dp[maxn][maxn][2], d[maxn], t[maxn], mov[maxn][maxn][2];
void run_case() {
int n;
while(cin >> n) {
for(int i = 1; i <= n; ++i) cin >> t[i];
for(int i = 1; i <= n; ++i) cin >> d[i];
memset(dp, 0, sizeof(dp));
for(int i = n-1; i >= 1; --i) {
for(int j = i+1; j <= n; ++j) {
if(dp[i+1][j][0] + d[i+1] - d[i] < dp[i+1][j][1] + d[j] - d[i]) {
dp[i][j][0] = dp[i+1][j][0] + d[i+1] - d[i];
mov[i][j][0] = 0; // from i to i+1
} else {
dp[i][j][0] = dp[i+1][j][1] + d[j] - d[i];
mov[i][j][0] = 1; // from i to j
}
if(dp[i][j][0] >= t[i]) {
dp[i][j][0] = INF;
}
// calculate dp[i][j][1]
if(dp[i][j-1][0] + d[j] - d[i] < dp[i][j-1][1] + d[j] - d[j-1]) {
dp[i][j][1] = dp[i][j-1][0] + d[j] - d[i];
mov[i][j][1] = 0; // from j to i
} else {
dp[i][j][1] = dp[i][j-1][1] + d[j] - d[j-1];
mov[i][j][1] = 1; // from j to j-1
}
if(dp[i][j][1] >= t[j]) {
dp[i][j][1] = INF;
}
}
}
int l=0, r=-1, flag;
if(dp[1][n][0] < INF) {
l = 2, r = n;
flag = mov[1][n][0];
cout << "1";
} else if(dp[1][n][1] < INF) {
l = 1, r = n-1;
flag = mov[1][n][1];
cout << n;
} else {
cout << "Mission Impossible";
}
while(l <= r) {
if(flag) {
cout << " " << r;
flag = mov[l][r][1];
r--;
} else {
cout << " " << l;
flag = mov[l][r][0];
l++;
}
}
cout << "\n";
}
}
int main() {
ios::sync_with_stdio(false), cin.tie(0);
cout.flags(ios::fixed);cout.precision(10);
//int t; cin >> t;
run_case();
cout.flush();
return 0;
}
何时区间dp呢?
数据范围一定
需要维护区间状态,不同区间选择造成的影响不同,石子合并,杀狼等
标签:端点 ble alc def syn case clu i+1 return
原文地址:https://www.cnblogs.com/GRedComeT/p/12356169.html