标签:lse void code isp 进制 define 合数 its const
是某个组合数的倍数也就意味着 模上k为0
考虑卢卡斯定理
n拆成k进制\(p1,p2,p3..pa\)
m拆成k进制\(q1,q2,q3..qa\)
模上k等于0,即: \[C_{p1}^{q1}*C_{p2}^{q2}*C_{p3}^{q3}....*C_{pa}^{qa}=0\]
因为k是质数,所以这个式子等于零只需要其中有一项 \(C_i^j\) 的 \(i<j\) 即可
这个直接数位dp就行,递推还是记搜自己喜欢就好
但是最后求到的答案需要减去在没有转成k进制时,组合数本身就等于零的答案
例如 \(C_5^8\) 这种
也就是一个等差数列求和
#include<bits/stdc++.h>
#define ll long long
#define R register
const int mod = 1e9+7;
using namespace std;
namespace IO
{
template<class T>
void rea(T &x)
{
char ch=getchar();int f(0);x = 0;
while(!isdigit(ch)) {f|=ch=='-';ch=getchar();}
while(isdigit(ch)) {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
x = f?-x:x;
}
template<class T>
T max(T a, T b) {return (a>b?a:b);}
template<class T>
T min(T a, T b) {return (a<b?a:b);}
}
using IO::rea;
int k, T, N[100], ln, M[100], lm;
int dp[100][2][2][2];
int dfs(int n, bool lin, bool lim, bool FG)
{
if(~dp[n][lin][lim][FG]) return dp[n][lin][lim][FG];
if(!n) return !FG;
int upn = (lin?N[n]:k-1), upm = (lim?M[n]:k-1);
int &ans = dp[n][lin][lim][FG]; ans = 0;
for(R int i = 0; i <= upn; ++i)
for(R int j = 0; j <= upm; ++j)
ans = (ans+dfs(n-1, lin&&i==upn, lim&&j==upm, (i<j?0:(FG?1:0))))%mod;
return ans;
}
int query(ll n, ll m)
{
memset(dp, -1, sizeof dp);
ll ans; ln = lm = 0;
m = min(m, n);
if(m%2) ans = -(((m+1)/2)%mod*(m%mod))%mod;
else ans = -((m/2)%mod*((m+1)%mod))%mod;
for(; n; n /= k) N[++ln] = n%k;
for(; m; m /= k) M[++lm] = m%k;
while(lm < ln) M[++lm] = 0;
ans = ((ans + dfs(ln, 1, 1, 1))%mod+mod)%mod;
return ans;
}
int main()
{
freopen("problem.in","r",stdin);
freopen("problem.out","w",stdout);
using IO::max;using IO::min;
rea(T), rea(k);
while(T --> 0)
{
ll n, m;
rea(n), rea(m);
printf("%d\n", query(n, m));
}
return 0;
}
标签:lse void code isp 进制 define 合数 its const
原文地址:https://www.cnblogs.com/heanda/p/12357974.html