码迷,mamicode.com
首页 > 其他好文 > 详细

Rx系列---响应式编程

时间:2020-02-27 11:34:23      阅读:70      评论:0      收藏:0      [点我收藏+]

标签:版本   text   name   ber   tar   学生   bitmap   读写文件   一段   

Rx是ReactiveX的简称,翻译过来就是响应式编程

首先要先理清这么一个问题:Rxjava和我们平时写的程序有什么不同。相信稍微对Rxjava有点认知的朋友都会深深感受到用这种方式写的程序和我们一般写的程序有很明显的不同。我们一般写的程序 统称为命令式程序,是以流程为核心的,每一行代码实际上都是机器实际上要执行的指令。而Rxjava这样的编程风格,称为函数响应式编程。函数响应式编程是以数据流为核心,处理数据的输入,处理以及输出的。这种思路写出来的代码就会跟机器实际执行的指令大相径庭。所以对于已经习惯命令式编程的我们来说,刚开始接触Rxjava的时候必然会很不适应,而且也不太符合我们平时的思维习惯。

引入依赖:

compile 'io.reactivex:rxjava:1.0.14' 
compile 'io.reactivex:rxandroid:1.0.1' 

RxJava

RxJava到底好在哪里

  • 异步
  • 简洁

一段普通的代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
new Thread() {
public void () {
super.run();
for (File folder : folders) {
File[] files = folder.listFiles();
for (File file : files) {
if (file.getName().endsWith(".png")) {
final Bitmap bitmap = getBitmapFromFile(file);
getActivity().runOnUiThread(new Runnable() {
public void () {
imageCollectorView.addImage(bitmap);
}
});
}
}
}
}
}.start();

一段用RxJava写的代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
Observable.from(folders)
.flatMap(new Func1<File, Observable<File>>() {
public Observable<File> call(File file) {
return Observable.from(file.listFiles());
}
})
.filter(new Func1<File, Boolean>() {
public Boolean call(File file) {
return file.getName().endsWith(".png");
}
})
.map(new Func1<File, Bitmap>() {
public Bitmap call(File file) {
return getBitmapFromFile(file);
}
})
.subscribeOn(Schedulers.io())
.observeOn(AndroidSchedulers.mainThread())
.subscribe(new Action1<Bitmap>() {
@Override
public void call(Bitmap bitmap) {
imageCollectorView.addImage(bitmap);
}
});

API介绍和原理解析

1.概念:扩展的观察者模式

RxJava 的异步实现,是通过一种扩展的观察者模式来实现的。

观察者模式

先简述一下观察者模式,已经熟悉的可以跳过这一段。

观察者模式面向的需求是:A 对象(观察者)对 B 对象(被观察者)的某种变化高度敏感,需要在 B 变化的一瞬间做出反应。举个例子,新闻里喜闻乐见的警察抓小偷,警察需要在小偷伸手作案的时候实施抓捕。在这个例子里,警察是观察者,小偷是被观察者,警察需要时刻盯着小偷的一举一动,才能保证不会漏过任何瞬间。程序的观察者模式和这种真正的『观察』略有不同,观察者不需要时刻盯着被观察者(例如 A 不需要每过 2ms 就检查一次 B 的状态),而是采用注册(Register)或者称为订阅(Subscribe)的方式,告诉被观察者:我需要你的某某状态,你要在它变化的时候通知我。 Android 开发中一个比较典型的例子是点击监听器 OnClickListener 。对设置 OnClickListener 来说, View 是被观察者, OnClickListener 是观察者,二者通过 setOnClickListener() 方法达成订阅关系。订阅之后用户点击按钮的瞬间,Android Framework 就会将点击事件发送给已经注册的 OnClickListener 。采取这样被动的观察方式,既省去了反复检索状态的资源消耗,也能够得到最高的反馈速度。当然,这也得益于我们可以随意定制自己程序中的观察者和被观察者,而警察叔叔明显无法要求小偷『你在作案的时候务必通知我』。

OnClickListener 的模式大致如下图:

技术图片

如图所示,通过 setOnClickListener() 方法,Button 持有 OnClickListener 的引用(这一过程没有在图上画出);当用户点击时,Button 自动调用 OnClickListeneronClick() 方法。另外,如果把这张图中的概念抽象出来(Button -> 被观察者、OnClickListener -> 观察者、setOnClickListener() -> 订阅,onClick() -> 事件),就由专用的观察者模式(例如只用于监听控件点击)转变成了通用的观察者模式。如下图:

技术图片

RxJava 的观察者模式

RxJava 有四个基本概念:Observable (可观察者,即被观察者)、 Observer (观察者)、 subscribe (订阅)、事件。ObservableObserver 通过 subscribe() 方法实现订阅关系,从而 Observable 可以在需要的时候发出事件来通知 Observer

与传统观察者模式不同, RxJava 的事件回调方法除了普通事件 onNext() (相当于 onClick() / onEvent())之外,还定义了两个特殊的事件:onCompleted()onError()

  • onCompleted(): 事件队列完结。RxJava 不仅把每个事件单独处理,还会把它们看做一个队列。RxJava 规定,当不会再有新的 onNext() 发出时,需要触发 onCompleted() 方法作为标志。

  • onError(): 事件队列异常。在事件处理过程中出异常时,onError() 会被触发,同时队列自动终止,不允许再有事件发出。

  • 在一个正确运行的事件序列中, onCompleted()onError() 有且只有一个,并且是事件序列中的最后一个。需要注意的是,onCompleted()onError() 二者也是互斥的,即在队列中调用了其中一个,就不应该再调用另一个。

RxJava 的观察者模式大致如下图:

技术图片

2.基本实现

1. 创建Observer

Observer 即观察者,它决定事件触发的时候将有怎样的行为。 RxJava 中的 Observer 接口的实现方式:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
Observer<String> observer = new Observer<String>() {
@Override
public void onNext(String s) {
Log.d(tag, "Item: " + s);
}
@Override
public void onCompleted() {
Log.d(tag, "Completed!");
}
@Override
public void onError(Throwable e) {
Log.d(tag, "Error!");
}
};

除了 Observer 接口之外,RxJava 还内置了一个实现了 Observer 的抽象类:SubscriberSubscriberObserver 接口进行了一些扩展,但他们的基本使用方式是完全一样的:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
Subscriber<String> subscriber = new Subscriber<String>() {
@Override
public void onNext(String s) {
Log.d(tag, "Item: " + s);
}
@Override
public void onCompleted() {
Log.d(tag, "Completed!");
}
@Override
public void onError(Throwable e) {
Log.d(tag, "Error!");
}
};

不仅基本使用方式一样,实质上,在 RxJava 的 subscribe 过程中,Observer 也总是会先被转换成一个 Subscriber 再使用。所以如果你只想使用基本功能,选择 ObserverSubscriber 是完全一样的。它们的区别对于使用者来说主要有两点:

  1. onStart(): 这是 Subscriber 增加的方法。它会在 subscribe 刚开始,而事件还未发送之前被调用,可以用于做一些准备工作,例如数据的清零或重置。这是一个可选方法,默认情况下它的实现为空。需要注意的是,如果对准备工作的线程有要求(例如弹出一个显示进度的对话框,这必须在主线程执行), onStart() 就不适用了,因为它总是在 subscribe 所发生的线程被调用,而不能指定线程。要在指定的线程来做准备工作,可以使用 doOnSubscribe() 方法,具体可以在后面的文中看到。

  2. unsubscribe(): 这是 Subscriber 所实现的另一个接口 Subscription 的方法,用于取消订阅。在这个方法被调用后,Subscriber 将不再接收事件。一般在这个方法调用前,可以使用 isUnsubscribed() 先判断一下状态。 unsubscribe() 这个方法很重要,因为在 subscribe() 之后, Observable 会持有 Subscriber 的引用,这个引用如果不能及时被释放,将有内存泄露的风险。所以最好保持一个原则:要在不再使用的时候尽快在合适的地方(例如
    onPause() onStop() 等方法中)调用 unsubscribe() 来解除引用关系,以避免内存泄露的发生。

2. 创建Observable

Observable 即被观察者,它决定什么时候触发事件以及触发怎样的事件。 RxJava 使用 create()方法来创建一个 Observable ,并为它定义事件触发规则:

1
2
3
4
5
6
7
8
9
10
Observable observable = Observable.create(new Observable.OnSubscribe<String>() {
@Override
public void call(Subscriber<? super String> subscriber) {
subscriber.onNext("Hello");
subscriber.onNext("Hi");
subscriber.onNext("Aloha");
subscriber.onCompleted();
}
});

可以看到,这里传入了一个 OnSubscribe 对象作为参数。OnSubscribe 会被存储在返回的 Observable 对象中,它的作用相当于一个计划表,当 Observable 被订阅的时候,OnSubscribecall() 方法会自动被调用,事件序列就会依照设定依次触发(对于上面的代码,就是观察者 Subscriber 将会被调用三次 onNext() 和一次 onCompleted())。这样,由被观察者调用了观察者的回调方法,就实现了由被观察者向观察者的事件传递,即观察者模式。

create() 方法是 RxJava 最基本的创造事件序列的方法。基于这个方法, RxJava 还提供了一些方法用来快捷创建事件队列,例如:

  • just(T...): 将传入的参数依次发送出来。
1
2
3
4
5
6
Observable observable = Observable.just("Hello", "Hi", "Aloha");
// onNext("Hello");
// onNext("Hi");
// onNext("Aloha");
// onCompleted();
  • from(T[]) / from(Iterable<? extends T>) : 将传入的数组或 Iterable 拆分成具体对象后,依次发送出来。
1
2
3
4
5
6
7
8
String[] words = {"Hello", "Hi", "Aloha"};
Observable observable = Observable.from(words);
// onNext("Hello");
// onNext("Hi");
// onNext("Aloha");
// onCompleted();

上面 just(T...) 的例子和 from(T[]) 的例子,都和之前的 create(OnSubscribe)的例子是等价的。

3. Subscribe(订阅)

创建了 ObservableObserver 之后,再用 subscribe() 方法将它们联结起来,整条链子就可以工作了。代码形式很简单:

1
2
3
4
observable.subscribe(observer);
// 或者:
observable.subscribe(subscriber);

有人可能会注意到, subscribe() 这个方法有点怪:它看起来是『observalbe 订阅了 observer / subscriber』而不是『observer / subscriber 订阅了 observalbe』,这看起来就像『杂志订阅了读者』一样颠倒了对象关系。这让人读起来有点别扭,不过如果把 API 设计成 observer.subscribe(observable) / subscriber.subscribe(observable) ,虽然更加符合思维逻辑,但对流式 API 的设计就造成影响了,比较起来明显是得不偿失的。

Observable.subscribe(Subscriber) 的内部实现是这样的(仅核心代码):

1
2
3
4
5
6
7
8
// 注意:这不是 subscribe() 的源码,而是将源码中与性能、兼容性、扩展性有关的代码剔除后的核心代码。
// 如果需要看源码,可以去 RxJava 的 GitHub 仓库下载。
public Subscription subscribe(Subscriber subscriber) {
subscriber.onStart();
onSubscribe.call(subscriber);
return subscriber;
}

可以看到,subscriber() 做了3件事:

  1. 调用 Subscriber.onStart() 。这个方法在前面已经介绍过,是一个可选的准备方法。
  2. 调用 Observable 中的 OnSubscribe.call(Subscriber) 。在这里,事件发送的逻辑开始运行。从这也可以看出,在 RxJava 中, Observable 并不是在创建的时候就立即开始发送事件,而是在它被订阅的时候,即当 subscribe() 方法执行的时候。
  3. 将传入的 Subscriber 作为 Subscription 返回。这是为了方便 unsubscribe().

整个过程中对象间的关系如下图:

技术图片

或者可以看动图:

技术图片

除了 subscribe(Observer)subscribe(Subscriber)subscribe() 还支持不完整定义的回调,RxJava 会自动根据定义创建出 Subscriber 。形式如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
Action1<String> onNextAction = new Action1<String>() {
// onNext()
@Override
public void call(String s) {
Log.d(tag, s);
}
};
Action1<Throwable> onErrorAction = new Action1<Throwable>() {
// onError()
@Override
public void call(Throwable throwable) {
// Error handling
}
};
Action0 onCompletedAction = new Action0() {
// onCompleted()
@Override
public void call() {
Log.d(tag, "completed");
}
};
// 自动创建 Subscriber ,并使用 onNextAction 来定义 onNext()
observable.subscribe(onNextAction);
// 自动创建 Subscriber ,并使用 onNextAction 和 onErrorAction 来定义 onNext() 和 onError()
observable.subscribe(onNextAction, onErrorAction);
// 自动创建 Subscriber ,并使用 onNextAction、 onErrorAction 和 onCompletedAction 来定义 onNext()、 onError() 和 onCompleted()
observable.subscribe(onNextAction, onErrorAction, onCompletedAction);

简单解释一下这段代码中出现的 Action1Action0Action0 是 RxJava 的一个接口,它只有一个方法 call(),这个方法是无参无返回值的;由于 onCompleted() 方法也是无参无返回值的,因此 Action0 可以被当成一个包装对象,将 onCompleted() 的内容打包起来将自己作为一个参数传入 subscribe() 以实现不完整定义的回调。这样其实也可以看做将 onCompleted() 方法作为参数传进了 subscribe(),相当于其他某些语言中的『闭包』。 Action1 也是一个接口,它同样只有一个方法 call(T param),这个方法也无返回值,但有一个参数;与 Action0 同理,由于 onNext(T obj)onError(Throwable error) 也是单参数无返回值的,因此 Action1 可以将 onNext(obj)onError(error) 打包起来传入 subscribe() 以实现不完整定义的回调。事实上,虽然 Action0Action1 在 API 中使用最广泛,但 RxJava 是提供了多个 ActionX 形式的接口 (例如 Action2, Action3) 的,它们可以被用以包装不同的无返回值的方法。

注:正如前面所提到的,Observer 和 Subscriber 具有相同的角色,而且 Observer 在 subscribe() 过程中最终会被转换成 Subscriber 对象,因此,从这里开始,后面的描述我将用 Subscriber 来代替 Observer ,这样更加严谨。

4. 场景示例

  1. a. 打印字符串数组

将字符串数组 names 中的所有字符串依次打印出来:

1
2
3
4
5
6
7
8
String[] names = ...;
Observable.from(names)
.subscribe(new Action1<String>() {
@Override
public void call(String name) {
Log.d(tag, name);
}
});
  1. b. 由 id 取得图片并显示

由指定的一个 drawable 文件 id drawableRes 取得图片,并显示在 ImageView 中,并在出现异常的时候打印 Toast 报错:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
int drawableRes = ...;
ImageView imageView = ...;
Observable.create(new OnSubscribe<Drawable>() {
@Override
public void call(Subscriber<? super Drawable> subscriber) {
Drawable drawable = getTheme().getDrawable(drawableRes));
subscriber.onNext(drawable);
subscriber.onCompleted();
}
}).subscribe(new Observer<Drawable>() {
@Override
public void onNext(Drawable drawable) {
imageView.setImageDrawable(drawable);
}
@Override
public void onCompleted大专栏  Rx系列---响应式编程ass="params">() {
}
@Override
public void onError(Throwable e) {
Toast.makeText(activity, "Error!", Toast.LENGTH_SHORT).show();
}
});

正如上面两个例子这样,创建出 ObservableSubscriber ,再用 subscribe()将它们串起来,一次 RxJava 的基本使用就完成了。非常简单。

在 RxJava 的默认规则中,事件的发出和消费都是在同一个线程的。也就是说,如果只用上面的方法,实现出来的只是一个同步的观察者模式。观察者模式本身的目的就是『后台处理,前台回调』的异步机制,因此异步对于 RxJava 是至关重要的。而要实现异步,则需要用到 RxJava 的另一个概念: Scheduler

3.线程控制—Scheduler

在不指定线程的情况下, RxJava 遵循的是线程不变的原则,即:在哪个线程调用 subscribe(),就在哪个线程生产事件;在哪个线程生产事件,就在哪个线程消费事件。如果需要切换线程,就需要用到 Scheduler (调度器)。

1.Scheduler 的 API

在RxJava 中,Scheduler ——调度器,相当于线程控制器,RxJava 通过它来指定每一段代码应该运行在什么样的线程。RxJava 已经内置了几个 Scheduler ,它们已经适合大多数的使用场景:

  • Schedulers.immediate(): 直接在当前线程运行,相当于不指定线程。这是默认的 Scheduler
  • Schedulers.newThread(): 总是启用新线程,并在新线程执行操作。
  • Schedulers.io(): I/O 操作(读写文件、读写数据库、网络信息交互等)所使用的 Scheduler。行为模式和 newThread() 差不多,区别在于 io() 的内部实现是是用一个无数量上限的线程池,可以重用空闲的线程,因此多数情况下 io() 比 newThread() 更有效率。不要把计算工作放在 io() 中,可以避免创建不必要的线程。
  • Schedulers.computation(): 计算所使用的 Scheduler。这个计算指的是 CPU 密集型计算,即不会被 I/O 等操作限制性能的操作,例如图形的计算。这个 Scheduler 使用的固定的线程池,大小为 CPU 核数。不要把 I/O 操作放在 computation() 中,否则 I/O 操作的等待时间会浪费 CPU。
  • 另外, Android 还有一个专用的 AndroidSchedulers.mainThread(),它指定的操作将在 Android 主线程运行。

有了这几个 Scheduler ,就可以使用 subscribeOn()observeOn() 两个方法来对线程进行控制了。 * subscribeOn(): 指定
subscribe() 所发生的线程,即 Observable.OnSubscribe 被激活时所处的线程。或者叫做事件产生的线程。 * observeOn(): 指定 Subscriber 所运行在的线程。或者叫做事件消费的线程。

文字叙述总归难理解,上代码:

1
2
3
4
5
6
7
8
9
10
Observable.just(1, 2, 3, 4)
.subscribeOn(Schedulers.io()) // 指定 subscribe() 发生在 IO 线程
.observeOn(AndroidSchedulers.mainThread()) // 指定 Subscriber 的回调发生在主线程
.subscribe(new Action1<Integer>() {
@Override
public void call(Integer number) {
Log.d(tag, "number:" + number);
}
});

上面这段代码中,由于 subscribeOn(Schedulers.io()) 的指定,被创建的事件的内容 1234 将会在 IO 线程发出;而由于 observeOn(AndroidScheculers.mainThread()) 的指定,因此 subscriber 数字的打印将发生在主线程 。事实上,这种在 subscribe() 之前写上两句 subscribeOn(Scheduler.io())observeOn(AndroidSchedulers.mainThread()) 的使用方式非常常见,它适用于多数的 『后台线程取数据,主线程显示』的程序策略。

而前面提到的由图片 id 取得图片并显示的例子,如果也加上这两句:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
int drawableRes = ...;
ImageView imageView = ...;
Observable.create(new OnSubscribe<Drawable>() {
@Override
public void call(Subscriber<? super Drawable> subscriber) {
Drawable drawable = getTheme().getDrawable(drawableRes));
subscriber.onNext(drawable);
subscriber.onCompleted();
}
})
.subscribeOn(Schedulers.io()) // 指定 subscribe() 发生在 IO 线程
.observeOn(AndroidSchedulers.mainThread()) // 指定 Subscriber 的回调发生在主线程
.subscribe(new Observer<Drawable>() {
@Override
public void onNext(Drawable drawable) {
imageView.setImageDrawable(drawable);
}
@Override
public void onCompleted() {
}
@Override
public void onError(Throwable e) {
Toast.makeText(activity, "Error!", Toast.LENGTH_SHORT).show();
}
});

那么,加载图片将会发生在 IO 线程,而设置图片则被设定在了主线程。这就意味着,即使加载图片耗费了几十甚至几百毫秒的时间,也不会造成丝毫界面的卡顿。

2.Scheduler的原理

RxJava 的 Scheduler API 很方便,也很神奇(加了一句话就把线程切换了,怎么做到的?而且 subscribe() 不是最外层直接调用的方法吗,它竟然也能被指定线程?)。然而 Scheduler 的原理需要放在后面讲,因为它的原理是以下一节《变换》的原理作为基础的。

4.变换

RxJava 提供了对事件序列进行变换的支持,这是它的核心功能之一,也是大多数人说『RxJava 真是太好用了』的最大原因。所谓变换,就是将事件序列中的对象或整个序列进行加工处理,转换成不同的事件或事件序列。概念说着总是模糊难懂的,来看 API。

  1. API

首先看一个 map() 的例子:

1
2
3
4
5
6
7
8
9
10
11
12
13
Observable.just("images/logo.png") // 输入类型 String
.map(new Func1<String, Bitmap>() {
@Override
public Bitmap call(String filePath) { // 参数类型 String
return getBitmapFromPath(filePath); // 返回类型 Bitmap
}
})
.subscribe(new Action1<Bitmap>() {
@Override
public void call(Bitmap bitmap) { // 参数类型 Bitmap
showBitmap(bitmap);
}
});

这里出现了一个叫做 Func1 的类。它和 Action1 非常相似,也是 RxJava 的一个接口,用于包装含有一个参数的方法。 Func1Action 的区别在于, Func1 包装的是有返回值的方法。另外,和 ActionX 一样, FuncX 也有多个,用于不同参数个数的方法。FuncXActionX 的区别在 FuncX 包装的是有返回值的方法。

可以看到,map() 方法将参数中的 String 对象转换成一个 Bitmap 对象后返回,而在经过 map() 方法后,事件的参数类型也由 String 转为了 Bitmap。这种直接变换对象并返回的,是最常见的也最容易理解的变换。不过 RxJava 的变换远不止这样,它不仅可以针对事件对象,还可以针对整个事件队列,这使得 RxJava 变得非常灵活。我列举几个常用的变换:

  • map(): 事件对象的直接变换,具体功能上面已经介绍过。它是 RxJava 最常用的变换。 map() 的示意图:

技术图片

  • flatMap(): 这是一个很有用但非常难理解的变换,因此我决定花多些篇幅来介绍它。 首先假设这么一种需求:假设有一个数据结构『学生』,现在需要打印出一组学生的名字。实现方式很简单:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
Student[] students = ...;
Subscriber<String> subscriber = new Subscriber<String>() {
@Override
public void onNext(String name) {
Log.d(tag, name);
}
...
};
Observable.from(students)
.map(new Func1<Student, String>() {
@Override
public String call(Student student) {
return student.getName();
}
})
.subscribe(subscriber);

很简单。那么再假设:如果要打印出每个学生所需要修的所有课程的名称呢?(需求的区别在于,每个学生只有一个名字,但却有多个课程。)首先可以这样实现:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Student[] students = ...;
Subscriber<Student> subscriber = new Subscriber<Student>() {
@Override
public void onNext(Student student) {
List<Course> courses = student.getCourses();
for (int i = 0; i < courses.size(); i++) {
Course course = courses.get(i);
Log.d(tag, course.getName());
}
}
...
};
Observable.from(students)
.subscribe(subscriber);

依然很简单。那么如果我不想在 Subscriber 中使用 for 循环,而是希望 Subscriber 中直接传入单个的 Course 对象呢(这对于代码复用很重要)?用 map() 显然是不行的,因为 map() 是一对一的转化,而我现在的要求是一对多的转化。那怎么才能把一个 Student 转化成多个 Course 呢?

这个时候,就需要用 flatMap() 了:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
Student[] students = ...;
Subscriber<Course> subscriber = new Subscriber<Course>() {
@Override
public void onNext(Course course) {
Log.d(tag, course.getName());
}
...
};
Observable.from(students)
.flatMap(new Func1<Student, Observable<Course>>() {
@Override
public Observable<Course> call(Student student) {
return Observable.from(student.getCourses());
}
})
.subscribe(subscriber);
`

从上面的代码可以看出, flatMap()map() 有一个相同点:它也是把传入的参数转化之后返回另一个对象。但需要注意,和 map() 不同的是, flatMap() 中返回的是个 Observable 对象,并且这个 Observable 对象并不是被直接发送到了 Subscriber 的回调方法中。 flatMap() 的原理是这样的:1. 使用传入的事件对象创建一个 Observable 对象;2. 并不发送这个 Observable, 而是将它激活,于是它开始发送事件;3. 每一个创建出来的 Observable 发送的事件,都被汇入同一个 Observable ,而这个 Observable 负责将这些事件统一交给 Subscriber 的回调方法。这三个步骤,把事件拆成了两级,通过一组新创建的 Observable 将初始的对象『铺平』之后通过统一路径分发了下去。而这个『铺平』就是 flatMap() 所谓的 flat。

flatMap() 示意图:

技术图片

扩展:由于可以在嵌套的 Observable 中添加异步代码, flatMap()也常用于嵌套的异步操作,例如嵌套的网络请求。示例代码(Retrofit + RxJava):

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
networkClient.token() // 返回 Observable<String>,在订阅时请求 token,并在响应后发送 token
.flatMap(new Func1<String, Observable<Messages>>() {
@Override
public Observable<Messages> call(String token) {
// 返回 Observable<Messages>,在订阅时请求消息列表,并在响应后发送请求到的消息列表
return networkClient.messages();
}
})
.subscribe(new Action1<Messages>() {
@Override
public void call(Messages messages) {
// 处理显示消息列表
showMessages(messages);
}
});

传统的嵌套请求需要使用嵌套的 Callback 来实现。而通过 flatMap() ,可以把嵌套的请求写在一条链中,从而保持程序逻辑的清晰

  • throttleFirst(): 在每次事件触发后的一定时间间隔内丢弃新的事件。常用作去抖动过滤,例如按钮的点击监听器: RxView.clickEvents(button) // RxBinding 代码,后面的文章有解释 .throttleFirst(500, TimeUnit.MILLISECONDS) // 设置防抖间隔为 500ms .subscribe(subscriber); 妈妈再也不怕我的用户手抖点开两个重复的界面啦。

此外, RxJava 还提供很多便捷的方法来实现事件序列的变换,这里就不一一举例了。

  1. 变换的原理:lift()

这些变换虽然功能各有不同,但实质上都是针对事件序列的处理和再发送。而在 RxJava 的内部,它们是基于同一个基础的变换方法: lift(Operator)。首先看一下 lift() 的内部实现(仅核心代码):

1
2
3
4
5
6
7
8
9
10
11
12
13
// 注意:这不是 lift() 的源码,而是将源码中与性能、兼容性、扩展性有关的代码剔除后的核心代码。
// 如果需要看源码,可以去 RxJava 的 GitHub 仓库下载。
public <R> Observable<R> lift(Operator<? extends R, ? super T> operator) {
return Observable.create(new OnSubscribe<R>() {
@Override
public void call(Subscriber subscriber) {
Subscriber newSubscriber = operator.call(subscriber);
newSubscriber.onStart();
onSubscribe.call(newSubscriber);
}
});
}
  1. compose: 对 Observable 整体的变换

除了 lift() 之外, Observable 还有一个变换方法叫做 compose(Transformer)。它和 lift() 的区别在于, lift() 是针对事件项和事件序列的,而 compose() 是针对 Observable 自身进行变换。举个例子,假设在程序中有多个 Observable ,并且他们都需要应用一组相同的 lift() 变换。

RxJava 的适用场景和使用方式

1. 与 Retrofit 的结合

Retrofit 除了提供了传统的 Callback 形式的 API,还有 RxJava 版本的 Observable 形式 API。下面我用对比的方式来介绍 Retrofit 的 RxJava 版 API 和传统版本的区别。

以获取一个 User 对象的接口作为例子。使用Retrofit 的传统 API,你可以用这样的方式来定义请求:

1
2
3
@GET("/user")
public void getUser(@Query("userId") String userId, Callback<User> callback);

在程序的构建过程中, Retrofit 会把自动把方法实现并生成代码,然后开发者就可以利用下面的方法来获取特定用户并处理响应:

1
2
3
4
5
6
7
8
9
10
11
12
13
getUser(userId, new Callback<User>() {
@Override
public void success(User user) {
userView.setUser(user);
}
@Override
public void failure(RetrofitError error) {
// Error handling
...
}
};

而使用 RxJava 形式的 API,定义同样的请求是这样的:

1
2
3
@GET("/user")
public Observable<User> getUser(@Query("userId") String userId);

使用的时候是这样的:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
getUser(userId)
.observeOn(AndroidSchedulers.mainThread())
.subscribe(new Observer<User>() {
@Override
public void onNext(User user) {
userView.setUser(user);
}
@Override
public void onCompleted() {
}
@Override
public void onError(Throwable error) {
// Error handling
...
}
});

2. RxBinding

RxBinding 是 Jake Wharton 的一个开源库,它提供了一套在 Android 平台上的基于 RxJava 的 Binding API。所谓 Binding,就是类似设置 OnClickListener 、设置 TextWatcher 这样的注册绑定对象的 API。

举个设置点击监听的例子。使用 RxBinding ,可以把事件监听用这样的方法来设置

1
2
3
4
5
6
7
8
9
Button button = ...;
RxView.clickEvents(button) // 以 Observable 形式来反馈点击事件
.subscribe(new Action1<ViewClickEvent>() {
@Override
public void call(ViewClickEvent event) {
// Click handling
}
});

看起来除了形式变了没什么区别,实质上也是这样。甚至如果你看一下它的源码,你会发现它连实现都没什么惊喜:它的内部是直接用一个包裹着的 setOnClickListener() 来实现的。然而,仅仅这一个形式的改变,却恰好就是 RxBinding 的目的:扩展性。通过 RxBinding 把点击监听转换成 Observable 之后,就有了对它进行扩展的可能。扩展的方式有很多,根据需求而定。一个例子是前面提到过的 throttleFirst() ,用于去抖动,也就是消除手抖导致的快速连环点击:

1
2
3
4
RxView.clickEvents(button)
.throttleFirst(500, TimeUnit.MILLISECONDS)
.subscribe(clickAction);

Rx系列---响应式编程

标签:版本   text   name   ber   tar   学生   bitmap   读写文件   一段   

原文地址:https://www.cnblogs.com/lijianming180/p/12371124.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!