标签:处理 正弦 线段 dex 偏差 能力 使用 embed 学习
关于Transformer的具体内容,可以访问:https://www.cnblogs.com/mj-selina/p/12369797.html
简介
Transformer是Google Brain2017年提出的一种模型,它的编码能力超越了RNN,但是对于长距离依赖的建模能力依然不足。为解决长距离依赖问题,Google Brain提出了Transformer-XL模型(XL是extra long的意思),不仅能够获取长距离依赖,而且解决了文本碎片化的问题。Transformer-XL是基于vanilla Transformer进行创新的,它不仅能比vanilla Transformer处理4.5倍长的长距离依赖关系,而且在评估期间要比vanilla Transformers快1800倍。
注1:文本碎片化是vanilla Transformer中会遇到的问题,因为vanilla Transformer只能处理固定长度的序列,如果序列过长,会将其切割成两个或者多个序列,如果序列之间存在语义关系,而vanilla Transformer在编码的时候会丢失这种语义关系(在编码时,序列与序列之间不产生信息交换),产生文本碎片化问题。
Vanilla Transformer
VanillaTransformer输入固定长度的序列,如果输入序列比规定的长度长,则会将输入序列不考虑语义的切割成多个segment,如下图(a)所示。这种不考虑语义的切割方法,会导致文本碎片化问题,每个segment只能获取到自己的语义信息,而丢失之前segment的语义信息。
而在评估时,vanilla模型只会考虑同样长度的segment,一般它会取最后一个位置的隐向量作为输出。如下图(b)所示,在预测输出时,模型每次会向右移动一步,并根据新的segment片段预测此刻的单词。这种使用当前序列重新预测的方法,会导致计算量大增,预测速度较慢,且不能利用更早的信息。
Transformer-XL
1、片段级递归机制(segment-level recurrence mechanism):在Transformer中引入了循环机制,在训练当前segment的时候,会保存并使用上一个segment每一层的输出向量。这样就可以利用之前segment的信息,提高Transformer长期依赖的能力,在训练时前一个segment的输出只参与前向计算,而不参与反向传播。
如上图所示,可以看出,在训练当前segment时,Transformer-XL会利用前一个segment的信息(图中绿色线段)。如果GPU内存允许,可以使用前多个segment的信息。
循环机制的另一个优点是测试速度快,它每次可以前进一个segment的距离,而不是像vanilla一样,一次只能前进一个表征。
2、相对位置编码(Relative Positional Encodings):Transformer中使用一个序列的绝对位置计算positional encoding,再与单词的encoding相加即可。但是Transformer-XL中,将序列分成多个segment,每个segment都会存在相同位置的Embedding,positional encoding的位置信息就失去了意义。因此Transformer-XL提出了相对位置编码,在计算当前位置隐向量的时候,考虑其互相依赖的token的位置关系。具体做法是,在计算attention score的时候,只考虑query向量与key向量的相对位置关系,并将这种相对位置关系加入到每一层Transformer的attention的计算中,具体的计算法师如下:
(1)内容权重:没有添加原始位置编码的原始分数
(2)相对于当前内容的位置偏差:指从前一个seglment的第一个位置(假设index为0)到当前segment的当前word的位置(假设index为k),则位置偏差为k-t,并对位置偏差使用正弦函数进行位置向量计算
(3)可学习的全局内容偏差:该模型添加了一个可学习的向量,用于调整其他表征内容(Kj)的重要性
(4)可学习的全局偏差:另一个可学习向量,仅根据表征之间的距离调整重要性(例如,最后一个词可能比前一个segment中的词更重要)?
关于相对位置的具体计算方法,可以看[4]
参考资料:
[1] https://zhuanlan.zhihu.com/p/70745925
[2] https://www.infoq.cn/article/wt-KaTfcsAv9E7exzIkF
[3] https://zhuanlan.zhihu.com/p/84159401
[4] http://www.linzehui.me/2019/05/07/%E4%BB%A3%E7%A0%81%E7%9B%B8%E5%85%B3/%E5%85%B3%E4%BA%8Etransformer-xl%E4%B8%ADrel-shift%E5%AE%9E%E7%8E%B0%E7%9A%84%E8%A7%A3%E8%AF%BB/
标签:处理 正弦 线段 dex 偏差 能力 使用 embed 学习
原文地址:https://www.cnblogs.com/mj-selina/p/12373636.html