标签:参数 权重 函数基础 误差 线性回归 额外 解释 深度 regular
?????过拟合现象,即模型的训练误差远?于它在测试集上的误差。虽然增?训练数据集可能会减轻过拟合,但是获取额外的训练数据往往代价?昂。本节介绍应对过拟合问题的常??法:权重衰减(weight decay)。
?????权重衰减等价于 范数正则化(regularization)。正则化通过为模型损失函数添加惩罚项使学出的模型参数值较?,是应对过拟合的常??段。我们先描述 范数正则化,再解释它为何?称权重衰减。
?????范数正则化在模型原损失函数基础上添加 范数惩罚项,从?得到训练所需要最?化的函数。 范数惩罚项指的是模型权重参数每个元素的平?和与?个正的常数的乘积。以3.1节(线性回归)中的线性回归损失函数
标签:参数 权重 函数基础 误差 线性回归 额外 解释 深度 regular
原文地址:https://www.cnblogs.com/somedayLi/p/12375202.html