标签:nbsp cti rom dict __name__ 图片 sea div http
""" 构造召回的模型 """ from sklearn.feature_extraction.text import TfidfVectorizer import pysparnn.cluster_index as ci from cut_sentence import cut import json def prepar_recall_datas(): qa_dict = json.load(open("./corpus/qa_dict.json",encoding="utf-8")) q_list = [] q_cut = [] for i in qa_dict: q_list.append(i) q_cut.append(" ".join(qa_dict[i]["cut"])) #分词之后的问题 [sentence,sentence,....] tfidf_vec = TfidfVectorizer() q_vector = tfidf_vec.fit_transform(q_cut) #得到问题的向量 #准备搜索的索引 cp = ci.MultiClusterIndex(q_vector,q_list) return tfidf_vec,cp,qa_dict def get_search_result(input): tfidf_vec, cp, qa_dict = prepar_recall_datas() entity = [] input_cut = [] for word,seg in cut(input,by_word=False,use_seg=True): input_cut.append(word) if seg == "kc": entity.append(word) # 1. 得到用户问题的向量 input_vector = tfidf_vec.transform([" ".join(input_cut)]) # 2. 计算相似度 result = cp.search(input_vector,k=2,k_clusters=10,return_distance=True) print(result) if __name__ == ‘__main__‘: get_search_result("python是什么") # "产品经理的课程是只针对IT行业的还是有其他行业相关?": { # "cut": [ # "产品经理", # "的", # "课程", # "是", # "只", # "针对", # "it", # "行业", # "的", # "还是", # "有", # "其他", # "行业", # "相关", # "?" # ], # "cut_by_word": [ # "产", # "品", # "经", # "理", # "的", # "课", # "程", # "是", # "只", # "针", # "对", # "it", # "行", # "业", # "的", # "还", # "是", # "有", # "其", # "他", # "行", # "业", # "相", # "关", # "?" # ], # "entity": [ # "产品经理" # ], # "ans": "技能是相通的,但项目以及业务类型都是互联网行业的,没有传统行业的。互联网行业的待遇要比传统行业高很多" # },
标签:nbsp cti rom dict __name__ 图片 sea div http
原文地址:https://www.cnblogs.com/LiuXinyu12378/p/12386347.html