标签:需要 span ext can blog class 平台 sum ace
lspci | grep -i vga
lspci -v -s 00:02.0
lspci | grep NVIDIA
cuda_8.0.61_375.26_linux.run
NVIDIA-Linux-x86_64-384.66.run
kernels-3.10.0-514.21.2.el7.x86_64
内核源码内核下载地址 https://opsx.alibaba.com/
https://www.kernel.org/
查看内核版本 uname -r
ls /boot | grep vmlinuz
查看已安装的内核包 rpm -aq | grep -i kernel
内核源码存放位置 ll /usr/src/kernels/
卸载 cuda
sudo sh /usr/local/cuda-8.0/bin/uninstall_cuda_8.0.pl
然后卸载驱动
nvidia-installer --uninstall
/usr/bin/nvidia-installer
安装内核
解压 kernels-3.10.0-514.21.2.el7.x86_64.tar.gz 到
/usr/src/kernels/
安装英伟达显卡驱动
sudo sh NVIDIA-Linux-x86_64-384.66.run
安装cuda-8.0
sudo sh cuda_8.0.61_375.26_linux.run
If you plan to no longer use the NVIDIA driver, you should make sure that no X screens are configured to use the NVIDIA X driver in your X configuration file. If you used nvidia-xconfig to configure X, it may have created a backup of your original configuration. Would you like to run
nvidia-xconfig --restore-original-backup
to attempt restoration of the original X configuration file?
[Yes]选中yes回车 No
Please read the following LICENSE and then select either "Accept" to accept the license and continue with the installation, or select "Do Not Accept" to abort the installation.
[Accept]选中Accept回车 Do Not Accept
Install NVIDIA‘s 32-bit compatibility libraries?
Yes [No]选中NO回车
cuda_8.0.61_375.26_linux.run
详细步骤sudo sh cuda_8.0.61_375.26_linux.run
Do you accept the previously read EULA?
accept/decline/quit: acceptInstall NVIDIA Accelerated Graphics Driver for Linux-x86_64 375.26?
(y)es/(n)o/(q)uit: y(若已安装其它版本选择no)Install the CUDA 8.0 Toolkit?
(y)es/(n)o/(q)uit: yEnter Toolkit Location
[ default is /usr/local/cuda-8.0 ]:Do you want to install a symbolic link at /usr/local/cuda?
(y)es/(n)o/(q)uit: nInstall the CUDA 8.0 Samples?
(y)es/(n)o/(q)uit: n
Installing the CUDA Toolkit in /usr/local/cuda-8.0 ...
= Summary =
Driver: Not Selected Toolkit: Installed in /usr/local/cuda-8.0 Samples: Not Selected
Please make sure that - PATH includes /usr/local/cuda-8.0/bin - LDLIBRARYPATH includes /usr/local/cuda-8.0/lib64, or, add /usr/local/>cuda-8.0/lib64 to /etc/ld.so.conf and run ldconfig as root
To uninstall the CUDA Toolkit, run the uninstall script in /usr/local/cuda-8.0/bin
Please see CUDAInstallationGuide_Linux.pdf in /usr/local/cuda-8.0/doc/pdf for detailed information on setting up CUDA.
***WARNING: Incomplete installation! This installation did not install the CUDA Driver. A driver of version at least 361.00 is required for CUDA 8.0 functionality to work. To install the driver using this installer, run the following command, replacing with the name of this run file: sudo .run -silent -driver
Logfile is /tmp/cudainstall8566.log
vim ~/.bashrc
# added by cuda_8.0 installer
export PATH="/usr/local/cuda-8.0/bin:$PATH"
export LD_LIBRARY_PATH="/usr/local/cuda-8.0/lib64:$LD_LIBRARY_PATH"
source ~/.bashrc
方案一执行nvcc -V,若显示以下信息,则安装cuda成功
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2016 NVIDIA Corporation
Built on TueJan1013:22:03CST_2017
Cuda compilation tools, release 8.0, V8.0.61
方案二依次输入以下命令,测试cuda的执行结果
cd /usr/local/cuda-8.0/samples/1_Utilities/deviceQuery
sudo make
./deviceQuery
若最后显示Result = PASS,表明cuda查询显卡信息成功
最后执行sudo make clean清除垃圾文件,并重启终端
CUDA Device Query (Runtime API) version (CUDART static linking) Detected 1 CUDA Capable device(s) Device 0: "GeForce GTX 1080" CUDA Driver Version / Runtime Version 9.1 / 8.0 CUDA Capability Major/Minor version number: 6.1 Total amount of global memory: 8118 MBytes (8511881216 bytes) (20) Multiprocessors, (128) CUDA Cores/MP: 2560 CUDA Cores GPU Max Clock rate: 1734 MHz (1.73 GHz) Memory Clock rate: 5005 Mhz Memory Bus Width: 256-bit L2 Cache Size: 2097152 bytes Maximum Texture Dimension Size (x,y,z) 1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384) Maximum Layered 1D Texture Size, (num) layers 1D=(32768), 2048 layers Maximum Layered 2D Texture Size, (num) layers 2D=(32768, 32768), 2048 layers Total amount of constant memory: 65536 bytes Total amount of shared memory per block: 49152 bytes Total number of registers available per block: 65536 Warp size: 32 Maximum number of threads per multiprocessor: 2048 Maximum number of threads per block: 1024 Max dimension size of a thread block (x,y,z): (1024, 1024, 64) Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535) Maximum memory pitch: 2147483647 bytes Texture alignment: 512 bytes Concurrent copy and kernel execution: Yes with 2 copy engine(s) Run time limit on kernels: Yes Integrated GPU sharing Host Memory: No Support host page-locked memory mapping: Yes Alignment requirement for Surfaces: Yes Device has ECC support: Disabled Device supports Unified Addressing (UVA): Yes Device PCI Domain ID / Bus ID / location ID: 0 / 1 / 0 Compute Mode: < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 9.1, CUDA Runtime Version = 8.0, NumDevs = 1, Device0 = GeForce GTX 1080
Result = PASS
安装NVIDIA-Linux-x86_64-384.66.run提示先安装kernle-source或kernle-devel解决方案
下载kernle-source源码包并解压到/usr/src/kernles/目录下
标签:需要 span ext can blog class 平台 sum ace
原文地址:https://www.cnblogs.com/pidgey/p/12394899.html