码迷,mamicode.com
首页 > 其他好文 > 详细

[Mathematics][Linear Algebra] The Rotation of the Base Vector in 3 dimensions

时间:2020-03-02 12:50:38      阅读:55      评论:0      收藏:0      [点我收藏+]

标签:numbers   style   ota   cos   ubi   text   clear   mil   sys   

Rotation:

  Provided a vector $\vec{S}$,considering rotating the orthogonal base vectors $\{\hat{e_1},\hat{e_2},\hat{e_3}\}$ into new orthogonal base vectors $\{\tilde{e_1},\tilde{e_2},\tilde{e_3}\}$, such that $\tilde{e_3}=\frac{\vec{S}}{\left|\vec{S}\right|}$, and these are under the conventional right-hand axises system.

Conclusion:

$cos\alpha = \frac{\vec{S}_x}{\left|\vec{S}\right|}$,

$cos\beta = \frac{\vec{S}_y}{\left|\vec{S}\right|}$,

$cos\gamma = \frac{\vec{S}_z}{\left|\vec{S}\right|}$,

$$ \left[\begin{matrix} cos\gamma & cos\alpha & cos \beta \\ cos\beta & cos\gamma & cos \alpha\\ cos\alpha & cos \beta & cos\gamma\end{matrix}\right] \left[\begin{matrix} \hat{e_1}\\ \hat{e_2}\\ \hat{e_3}\end{matrix}\right] = \left[\begin{matrix} \tilde{e_1}\\ \tilde{e_2}\\ \tilde{e_3}\end{matrix}\right] $$

 

Deduction:

  Considering the unit vector in the direction of $\vec{S}$, $\vec{u}=\frac{\vec{S}}{\left|\vec{S}\right|}$.

  Then it‘s clear that $\vec{u}=cos\alpha \hat{e_1}+cos\beta \hat{e_2} + cos\gamma \hat{e_3}$. Thus $\tilde{e_3}=cos\alpha \hat{e_1}+cos\beta \hat{e_2} + cos\gamma \hat{e_3}$.

  And the difference between the relationship of $\hat{e_i}$ and $\tilde{e_i}$, ($i = 1,2,3$) is just the subindex. So we can quick derive the other two by substituting the subnumbers, and after careful deduction, we get above equation, and we can convince ourselves by checking the determinant of the roration matrix to be 1.

[Mathematics][Linear Algebra] The Rotation of the Base Vector in 3 dimensions

标签:numbers   style   ota   cos   ubi   text   clear   mil   sys   

原文地址:https://www.cnblogs.com/raymondjiang/p/12394708.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!