码迷,mamicode.com
首页 > 其他好文 > 详细

noi online 提高组t2

时间:2020-03-08 13:59:24      阅读:94      评论:0      收藏:0      [点我收藏+]

标签:理解   题目   mil   wap   name   close   ace   逆序对   i++   

题目描述

给定一个 1 ∼ n1n 的排列 p_ipi?,接下来有 mm 次操作,操作共两种:

  1. 交换操作:给定 xx,将当前排列中的第 xx 个数与第 x+1x+1 个数交换位置。
  2. 询问操作:给定 kk,请你求出当前排列经过 kk 轮冒泡排序后的逆序对个数。 对一个长度为 nn 的排列 p_ipi? 进行一轮冒泡排序的伪代码如下:
for i = 1 to n-1:
  if p[i] > p[i + 1]:
    swap(p[i], p[i + 1])

输入格式

第一行两个整数 nn, mm,表示排列长度与操作个数。

第二行 nn 个整数表示排列 p_ipi?

接下来 mm 行每行两个整数 t_iti?c_ici?,描述一次操作:

  • 若 t_i=1ti?=1,则本次操作是交换操作,x=c_ix=ci?
  • 若 t_i=2ti?=2,则本次操作是询问操作,k=c_ik=ci?

输出格式

对于每次询问操作输出一行一个整数表示答案。

 

输入输出样例

输入 #1
3 6
1 2 3
2 0
1 1
1 2
2 0
2 1
2 2
输出 #1
0
2
1
0

说明/提示

样例一解释

第一次操作:排列为 \{1,2,3\},经过 0 轮冒泡排序后为 \{1,2,3\}0 个逆序对。

第二次操作:排列变为 \{2,1,3\}

第三次操作:排列变为 \{2,3,1\}

第四次操作:经过 0轮冒泡排序后排列变为 \{2,3,1\}{2,3,1},2 个逆序对。

第五次操作:经过 1 轮冒泡排序后排列变为 \{2,1,3\}{2,1,3},1 个逆序对。

第六次操作:经过 2轮冒泡排序后排列变为 \{1,2,3\}{1,2,3},0 个逆序对。


数据范围与提示

对于测试点 1 ∼ 2:nn, m \leqslant 100m?100。

对于测试点 3 ∼ 4:nn, m \leqslant 2000m?2000。

对于测试点 5 ∼ 6:交换操作个数不超过 100100。

对于所有测试点:2 \leqslant n2?n, m \leqslant 2 \times 10^5m?2×105,t_i \in \{1,2\}ti?{1,2},1 \leqslant x < n1?x<n,0 \leqslant k < 2^{31}0?k<231。

 

 

解析:

本题是个结论题。。。

手玩几组冒泡排序就会发现,经历一次冒泡排序会发生这样的事情:

如果一个数左边有比它大的数:这个数消除不了逆序对

否则,这个数可以一直向后交换,直到遇到比它大的数

简单理解:如果它左边有比它厉害的,它就被干掉了,

否则它就一直向右碾压,直到遇到它打不过的人再停下。

具体操作:

 

我们记录第i位数前面比它大的数的数量为b[i],显然,

当前序列的总逆序对数量就是所有的b之和通过对冒泡排序的观察

,我们可以发现,每一遍冒泡排序都会使得所有b[i]=max(b[i]-1,0)

 

我们采用树状数组差分维护这一操作,令quera(t)为当ti=2k=t时的答案

 

在数组最前面加入当前序列总逆序对数量,然后在第i位放b大于i的数字的数量的相反数,

因为这些数字在第i轮逆序对数均会减1

代码:

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=2e5+5;
int n,m,a[maxn],b[maxn],d[maxn];
ll c[maxn],ans;
inline int lowbit(int x)
{
    return x&(-x);
}
inline void add(int x,ll val)
{
    while(x<=n)
	{
        c[x]+=val;
        x+=lowbit(x);
    }
}
inline ll quera(int x)
{
    ll res=0;
    while(x>0)
	{
        res+=c[x];
        x-=lowbit(x);
    }
    return res;
}
int main()
{
    int opt,x,tmp=0;
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;++i)
	{
        scanf("%d",&a[i]);
        b[i]=i-1-quera(a[i]);
        ans+=b[i],++d[b[i]];
        add(a[i],1);
    }
    memset(c,0,sizeof(c));
    add(1,ans);
    for(int i=0;i<n;i++)
	{
        tmp+=d[i];
        add(i+2,tmp-n);
    }
    for(int i=1;i<=m;i++)
	{
        scanf("%d%d",&opt,&x);
        x=min(x,n-1);
        if(opt==1)
		{
            if(a[x]<a[x+1])
			{
                swap(a[x],a[x+1]);
                swap(b[x],b[x+1]);
                add(1,1);
                add(b[x+1]+2,-1);
                b[x+1]++;
            }
            else
			{
                swap(a[x],a[x+1]);
                swap(b[x],b[x+1]);
                add(1,-1);
                b[x]--;
                add(b[x]+2,1);
            }
        }
        else printf("%lld\n",quera(x+1));
    }
    return 0;
}

  

noi online 提高组t2

标签:理解   题目   mil   wap   name   close   ace   逆序对   i++   

原文地址:https://www.cnblogs.com/chen-1/p/12442073.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!