标签:trick 利用 限制 分析 测试 训练 处理 需要 假设
测试最基本的baseline模型如resnet50, efficientnet, senet等等模型,得到在暂时不进行数据增强的情况下得到一个较为出色的结果的模型(验证结果比较高同时能够对数据适当的过拟合)。这一步自己设定最为直观的Loss,optimizer, lr(可微调)。此阶段可以测试多个模型,留下top k。
在上一步训练好的模型基础上,检测各种数据增强的方式,尺寸大小,label smoothimg, mix up等有效性,其该单变量有效性该这样判定:能够使得训练集合过拟合程度降低并且在验证集上的结果不降低太多,或者是能够提高验证集上的结果。
对不平衡样本进行处理,进行合理的预处理,进行EDA,根据自己的假设对数据进行处理并且用结果进行验证,并对结果合理性进行分析。
针对具体的问题看是否需要修改网络结构,并且结果验证。根据任务,评分函数,思考loss能否进行改进, optimizer结果可以进行一些对比。
可以对网络进行finetune,用更有效果的optimizer, TTA,同时可以对比较优秀的几个网络进行ensemble、
如果比赛不限制外部数据的话,可以充分利用外部数据对网络进行预训练,甚至利用外部数据进行网络训练,还有可以充分利用伪标签数据。
模型预训练在小数据集比赛中很重要。
还有一些tricks也可以尝试尝试。
image classification competition steps
标签:trick 利用 限制 分析 测试 训练 处理 需要 假设
原文地址:https://www.cnblogs.com/ziwh666/p/12458639.html