标签:最小 row com rip str i++ ret using def
题目链接。
三塔汉诺塔问题,给一个 \(3 \times 3\) 的矩阵 \(t\),\(t_{i, j}\) 表示从 \(i\) 塔移动一个盘子到 \(j\) 塔的花费。
初始状态 \(n\) 个盘子都在第一个盘子,要求将所有的移到第三个盘子,求最小花费。
显然可以间接移动,花费有可能更优,先用 Floyd 算法算出从 \(i\) 间接 / 直接移动到 \(j\) 的最小花费,设 \(d_{i,j}\) 表示从 \(i\) 到 \(j\) 的最小花费。
显然无后效性,考虑 \(dp\)。
设 \(f_{i,a,b}\) 表示将 \(i\) 个盘子从 \(a\) 移动到 \(b\) 的最小花费。
\(f_{1, a, b} = d_{a,b}\) 其余为正无穷
不妨设另外一个盘子为 \(c\)。
先把 \(n\) 个盘子看做两个整体:第 \(n\) 个盘子和 \(n - 1\) 个盘子,这样可以 DP 了。
通过观察发现有两个可能成为最优的转移方式:
其他的转移一定是这两种 + 反复横跳形成的。
将上面的方式翻译一下,即:
\(f_{i, a, b} \gets f_{i - 1, a,c} + t_{a,b} + f_{i - 1, c, b}\)
\(f_{i, a, b} \gets f_{i - 1, a,b} + t_{a,c} + f_{i - 1, b, a} + t_{c,b} + f_{i - 1, a, b}\)
值得注意的是这里不能用 \(d\),因为其他盘子不是空的,不能作为间接量。
\(O(N)\)
注意开 long long !
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int N = 45;
typedef long long LL;
int t[3][3], g[3][3], n;
LL f[N][3][3];
int main() {
for (int i = 0; i < 3; i++)
for (int j = 0; j < 3; j++) scanf("%d", &t[i][j]), g[i][j] = t[i][j];
scanf("%d", &n);
for (int k = 0; k < 3; k++)
for (int i = 0; i < 3; i++)
for (int j = 0; j < 3; j++)
t[i][j] = min(t[i][j], t[i][k] + t[k][j]);
memset(f, 0x3f, sizeof f);
for (int i = 0; i < 3; i++)
for (int j = 0; j < 3; j++)
f[1][i][j] = t[i][j];
for (int i = 2; i <= n; i++) {
for (int a = 0; a < 3; a++) {
for (int b = 0; b < 3; b++) {
if (a == b) continue;
int c = 3 - a - b;
f[i][a][b] = min(f[i - 1][a][c] + g[a][b] + f[i - 1][c][b], f[i - 1][a][b] + g[a][c] + f[i - 1][b][a] + g[c][b] + f[i - 1][a][b]);
}
}
}
printf("%lld\n", f[n][0][2]);
return 0;
}
标签:最小 row com rip str i++ ret using def
原文地址:https://www.cnblogs.com/dmoransky/p/12483477.html