码迷,mamicode.com
首页 > 其他好文 > 详细

Map-CurrentHashMap

时间:2020-03-15 20:48:53      阅读:72      评论:0      收藏:0      [点我收藏+]

标签:advance   count   链表   tran   并发   大小   imu   其他   catch   

一、数据结构

  同HashMap,数组+链表+红黑树,关键属性也和HashMap相同

  • ConCurrentHashMap支持高并发的访问和更新,它是线程安全

  • 检索操作不用加锁,get方法是非阻塞的

  • key和value都不允许为null

二、spread()

//高低16位异或处理
static
final int spread(int h) { return (h ^ (h >>> 16)) & HASH_BITS; }

二、put()

CAS操作

  tabAt()该方法用来获取table数组中索引为i的Node元素
  casTabAt()利用CAS操作设置table数组中索引为i的元素
  setTabAt()该方法用来设置table数组中索引为i的元素
    final V putVal(K key, V value, boolean onlyIfAbsent) {
        if (key == null || value == null) throw new NullPointerException();
     //1.重哈希
int hash = spread(key.hashCode()); int binCount = 0; for (Node<K,V>[] tab = table;;) { Node<K,V> f; int n, i, fh;
       //2. 如果当前table还没有初始化先调用initTable方法将tab进行初始化
if (tab == null || (n = tab.length) == 0) tab = initTable();
       //3. tab中索引为i的位置的元素为null,则直接使用CAS将值插入即可
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) { if (casTabAt(tab, i, null, new Node<K,V>(hash, key, value, null))) break; // no lock when adding to empty bin }
      //4. 当前正在扩容,通过判断该节点的hash值是不是等于-1(MOVED)
else if ((fh = f.hash) == MOVED) tab = helpTransfer(tab, f); else { V oldVal = null; synchronized (f) { if (tabAt(tab, i) == f) {
              //5. 当前为链表,在链表中插入新的键值对
if (fh >= 0) { binCount = 1; for (Node<K,V> e = f;; ++binCount) { K ek; if (e.hash == hash && ((ek = e.key) == key || (ek != null && key.equals(ek)))) { oldVal = e.val; if (!onlyIfAbsent) e.val = value; break; } Node<K,V> pred = e; if ((e = e.next) == null) { pred.next = new Node<K,V>(hash, key, value, null); break; } } }
              // 6.当前为红黑树,将新的键值对插入到红黑树中
else if (f instanceof TreeBin) { Node<K,V> p; binCount = 2; if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key, value)) != null) { oldVal = p.val; if (!onlyIfAbsent) p.val = value; } } } }
         // 7.插入完键值对后再根据实际大小看是否需要转换成红黑树
if (binCount != 0) { if (binCount >= TREEIFY_THRESHOLD) treeifyBin(tab, i); if (oldVal != null) return oldVal; break; } } }
     //8.对当前容量大小进行检查,如果超过了临界值(实际大小*加载因子)就需要扩容 addCount(
1L, binCount); return null; }

 流程总结:

1、判断Node[]数组是否初始化,没有则进行初始化操作
2、通过hash定位数组的索引坐标,是否有Node节点,如果没有则使用CAS进行添加(链表的头节点),添加失败则进入下次循环。
3、检查到内部正在扩容,就帮助它一块扩容。
4、如果f!=null,则使用synchronized锁住f元素(链表/红黑树的头元素)。如果是Node(链表结构)则执行链表的添加操作;如果是TreeNode(树型结构)则执行树添加操作。
5、判断链表长度已经达到临界值8(默认值),当节点超过这个值就需要把链表转换为树结构
6、如果添加成功就调用addCount()方法统计size,并且检查是否需要扩容
 
 
三、initable() 初始化
private final Node<K,V>[] initTable() {
        Node<K,V>[] tab; int sc;
        while ((tab = table) == null || tab.length == 0) {
            if ((sc = sizeCtl) < 0)
          // 1. 保证只有一个线程正在进行初始化操作 Thread.yield();
// lost initialization race; just spin else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) { try { if ((tab = table) == null || tab.length == 0) {
               // 2. 得出数组的大小
int n = (sc > 0) ? sc : DEFAULT_CAPACITY; @SuppressWarnings("unchecked")
              // 3. 这里才真正的初始化数组 Node
<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n]; table = tab = nt;
              // 4. 计算数组中可用的大小:实际大小n*0.75(加载因子) sc
= n - (n >>> 2); } } finally { sizeCtl = sc; } break; } } return tab; }
  为了保证能够正确初始化,在第1步中会先通过if进行判断,若当前已经有一个线程正在初始化即sizeCtl值变为-1,这个时候其他线程在If判断为true从而调用Thread.yield()让出CPU时间片。正在进行初始化的线程会调用U.compareAndSwapInt方法将sizeCtl改为-1即正在初始化的状态。另外还需要注意的事情是,在第四步中会进一步计算数组中可用的大小即为数组实际大小n乘以加载因子0.75.可以看看这里乘以0.75是怎么算的,0.75为四分之三,这里n - (n >>> 2)是不是刚好是n-(1/4)n=(3/4)n,挺有意思的吧:)。如果选择是无参的构造器的话,这里在new Node数组的时候会使用默认大小DEFAULT_CAPACITY(16),然后乘以加载因子0.75为12,也就是说数组的可用大小为12。


四、扩容
final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
        Node<K,V>[] nextTab; int sc;
        if (tab != null && (f instanceof ForwardingNode) &&
            (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
            int rs = resizeStamp(tab.length);
            while (nextTab == nextTable && table == tab &&
                   (sc = sizeCtl) < 0) {
                if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                    sc == rs + MAX_RESIZERS || transferIndex <= 0)
                    break;
                if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
                    transfer(tab, nextTab);
                    break;
                }
            }
            return nextTab;
        }
        return table;
    }

 

private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
        int n = tab.length, stride;
        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
            stride = MIN_TRANSFER_STRIDE; // subdivide range
        if (nextTab == null) {            // initiating
            try {
                @SuppressWarnings("unchecked")
                Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
                nextTab = nt;
            } catch (Throwable ex) {      // try to cope with OOME
                sizeCtl = Integer.MAX_VALUE;
                return;
            }
            nextTable = nextTab;
            transferIndex = n;
        }
        int nextn = nextTab.length;
        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
        boolean advance = true;
        boolean finishing = false; // to ensure sweep before committing nextTab
        for (int i = 0, bound = 0;;) {
            Node<K,V> f; int fh;
            while (advance) {
                int nextIndex, nextBound;
                if (--i >= bound || finishing)
                    advance = false;
                else if ((nextIndex = transferIndex) <= 0) {
                    i = -1;
                    advance = false;
                }
                else if (U.compareAndSwapInt
                         (this, TRANSFERINDEX, nextIndex,
                          nextBound = (nextIndex > stride ?
                                       nextIndex - stride : 0))) {
                    bound = nextBound;
                    i = nextIndex - 1;
                    advance = false;
                }
            }
            if (i < 0 || i >= n || i + n >= nextn) {
                int sc;
                if (finishing) {
                    nextTable = null;
                    table = nextTab;
                    sizeCtl = (n << 1) - (n >>> 1);
                    return;
                }
                if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
                    if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
                        return;
                    finishing = advance = true;
                    i = n; // recheck before commit
                }
            }
            else if ((f = tabAt(tab, i)) == null)
                advance = casTabAt(tab, i, null, fwd);
            else if ((fh = f.hash) == MOVED)
                advance = true; // already processed
            else {
                synchronized (f) {
                    if (tabAt(tab, i) == f) {
                        Node<K,V> ln, hn;
                        if (fh >= 0) {
                            int runBit = fh & n;
                            Node<K,V> lastRun = f;
                            for (Node<K,V> p = f.next; p != null; p = p.next) {
                                int b = p.hash & n;
                                if (b != runBit) {
                                    runBit = b;
                                    lastRun = p;
                                }
                            }
                            if (runBit == 0) {
                                ln = lastRun;
                                hn = null;
                            }
                            else {
                                hn = lastRun;
                                ln = null;
                            }
                            for (Node<K,V> p = f; p != lastRun; p = p.next) {
                                int ph = p.hash; K pk = p.key; V pv = p.val;
                                if ((ph & n) == 0)
                                    ln = new Node<K,V>(ph, pk, pv, ln);
                                else
                                    hn = new Node<K,V>(ph, pk, pv, hn);
                            }
                            setTabAt(nextTab, i, ln);
                            setTabAt(nextTab, i + n, hn);
                            setTabAt(tab, i, fwd);
                            advance = true;
                        }
                        else if (f instanceof TreeBin) {
                            TreeBin<K,V> t = (TreeBin<K,V>)f;
                            TreeNode<K,V> lo = null, loTail = null;
                            TreeNode<K,V> hi = null, hiTail = null;
                            int lc = 0, hc = 0;
                            for (Node<K,V> e = t.first; e != null; e = e.next) {
                                int h = e.hash;
                                TreeNode<K,V> p = new TreeNode<K,V>
                                    (h, e.key, e.val, null, null);
                                if ((h & n) == 0) {
                                    if ((p.prev = loTail) == null)
                                        lo = p;
                                    else
                                        loTail.next = p;
                                    loTail = p;
                                    ++lc;
                                }
                                else {
                                    if ((p.prev = hiTail) == null)
                                        hi = p;
                                    else
                                        hiTail.next = p;
                                    hiTail = p;
                                    ++hc;
                                }
                            }
                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
                                (hc != 0) ? new TreeBin<K,V>(lo) : t;
                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
                                (lc != 0) ? new TreeBin<K,V>(hi) : t;
                            setTabAt(nextTab, i, ln);
                            setTabAt(nextTab, i + n, hn);
                            setTabAt(tab, i, fwd);
                            advance = true;
                        }
                    }
                }
            }
        }
    }

 五、addCount() 计算CurrentHashMap的size

private final void addCount(long x, int check) {
        CounterCell[] as; long b, s;
     //更新baseCount,table的数量,counterCells表示元素个数的变化
if ((as = counterCells) != null || !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) { CounterCell a; long v; int m; boolean uncontended = true;
      //如果多个线程都在执行,则CAS失败,执行fullAddCount,全部加入count
if (as == null || (m = as.length - 1) < 0 || (a = as[ThreadLocalRandom.getProbe() & m]) == null || !(uncontended = U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) { fullAddCount(x, uncontended); return; } if (check <= 1) return; s = sumCount(); }
     //check>=0表示需要进行扩容操作
if (check >= 0) { Node<K,V>[] tab, nt; int n, sc; while (s >= (long)(sc = sizeCtl) && (tab = table) != null && (n = tab.length) < MAXIMUM_CAPACITY) { int rs = resizeStamp(n); if (sc < 0) { if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 || sc == rs + MAX_RESIZERS || (nt = nextTable) == null || transferIndex <= 0) break; if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) transfer(tab, nt); } else if (U.compareAndSwapInt(this, SIZECTL, sc, (rs << RESIZE_STAMP_SHIFT) + 2)) transfer(tab, null); s = sumCount(); } } }

 

 六、get() 非阻塞
public V get(Object key) {
        Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
    //计算哈希值
int h = spread(key.hashCode()); if ((tab = table) != null && (n = tab.length) > 0 && (e = tabAt(tab, (n - 1) & h)) != null) { if ((eh = e.hash) == h) { if ((ek = e.key) == key || (ek != null && key.equals(ek))) return e.val; }
       //hash值为负值表示正在扩容,这个时候查的是ForwardingNode的find方法来定位到nextTable来
      //查找,查找到就返回
else if (eh < 0) return (p = e.find(h, key)) != null ? p.val : null;
       //既不是首节点也不是ForwardingNode,那就往下遍历
while ((e = e.next) != null) { if (e.hash == h && ((ek = e.key) == key || (ek != null && key.equals(ek)))) return e.val; } } return null; }

 

 七、HashMap、Hashtable、ConcurrentHashMap区别
  1. HashMap线程不安全,数组+链表+红黑树
  2. Hashtable线程安全,锁住整个对象,数组+链表
  3. ConccurentHashMap线程安全,CAS+同步锁,数组+链表+红黑树
  4. HashMap的key,value均可为null,其他两个不行。
八、JDK1.7 1.8 区别
1、不采用segment而采用node,锁住node来实现减小锁粒度
2、设计了MOVED状态 当resize的中过程中 线程2还在put数据,线程2会帮助resize。
3、使用3个CAS操作来确保node的一些操作的原子性,这种方式代替了锁。
4、sizeCtl的不同值来代表不同含义,起到了控制的作用。
采用synchronized而不是ReentrantLock
 
 
 
 
 
 
 

Map-CurrentHashMap

标签:advance   count   链表   tran   并发   大小   imu   其他   catch   

原文地址:https://www.cnblogs.com/qmillet/p/12498172.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!